Study of Oxygen Vacancy Diffusion in Yttria-doped Ceria and Yttria-stabilized Zirconia by Statistical Moment Method

Le Thu Lam, Vu Van Hung, Nguyen Thanh Hai
Author affiliations

Authors

  • Le Thu Lam Tay Bac University, Quyet Tam Precinct, Son La, Vietnam
  • Vu Van Hung University of Education, 182 Luong The Vinh Street, Thanh Xuan, Hanoi, Vietnam
  • Nguyen Thanh Hai The National Assembly of the Socialist Republic of Vietnam, 22 Hung Vuong Street, Ba Dinh, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/29/3/13731

Abstract

Oxygen vacancy diffusion in yttria-doped ceria (YDC) and yttria-stabilized zirconia
(YSZ) are investigated using statistical moment method, including the anharmonicity effects of thermal lattice vibrations. The expressions of oxygen vacancy-dopant association energy and oxygen vacancy migration energy are derived in an explicit form. Calculation of the vacancy migration energy enable us to evaluate the important role of dopant cation on the oxygen vacancy
diffusion. The dependences of the vacancy activation energies and diffusion coefficients in YDC and YSZ systems on dopant concentration are also discussed in detail. The calculated results are in good agreement with the other theoretical and experimental results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

F. Ramadhaniac, M.A. Hussaina, H. Mokhlisb, S. Hajimolanad, Renewable and Sustainable Energy Reviews 76 (2017) 460. DOI: https://doi.org/10.1016/j.rser.2017.03.052

K. Muthukkumaran, R. Bokalawela, T. Mathews, S. Selladurai, J. Mater. Sci. 42 (2007) 7461. DOI: https://doi.org/10.1007/s10853-006-1486-5

V.G. Zavodinsky, Physics of the Solid State 46 (2004) 453. DOI: https://doi.org/10.1134/1.1687859

H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, Solid State Ionics 160 (2003) 109.

F. Ye, T. Mori, D.R. Ou, A.N. Cormack, Solid State Ionics 180 (2009) 1127. DOI: https://doi.org/10.1016/j.ssi.2009.06.002

T. Mori, T. Kobayashi, Y. Wang, J. Drennan,T. Nishimura, J.G. Li, H. Kobayashi, J. Am. Ceram. Soc. 88 (2005) 1981. DOI: https://doi.org/10.1111/j.1551-2916.2005.00260.x

H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, Solid State Ionics 160 (2003) 109. DOI: https://doi.org/10.1016/S0167-2738(03)00153-X

T. Arima, K. Fukuyo, K. Idemitsu, Y. Inagaki, Journal of Molecular Liquids 113 (2004) 67. DOI: https://doi.org/10.1016/j.molliq.2004.02.038

F. Pietrucci, M. Bernasconi, A. Laio, M. Parrinello, Physical Review B 78 (2008) 094301. DOI: https://doi.org/10.1103/PhysRevB.78.094301

A. Kushima, B. Yildiz, J. Mater. Chem. 20 (2010) 4809. DOI: https://doi.org/10.1039/c000259c

M. Nakayama, M. Martin, Phys. Chem. Chem. Phys. 11 (2009) 3241. DOI: https://doi.org/10.1039/b900162j

S. Grieshammer, B.O.H. Grope, J. Koettgen, M. Martin, Phys. Chem. Chem. Phys. 16 (2014) 9974. DOI: https://doi.org/10.1039/c3cp54811b

R. Krishnamurthy, Y.-G. Yoon, D.J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87 (2004) 1821. DOI: https://doi.org/10.1111/j.1151-2916.2004.tb06325.x

R. Pornprasertsuk, P. Ramanarayanan, C.B. Musgrave, F.B. Prinz, Journal of Applied Physics 98 (2005) 103513 [15] V.V. Hung, B.D. Tinh, Modern Physics Letters B 25 (2011) 1101. DOI: https://doi.org/10.1063/1.2135889

K. Masuda-Jindo, V.V. Hung, P.E.A Turchi, Solid State Phenomena 138 (2008) 209. DOI: https://doi.org/10.4028/www.scientific.net/SSP.138.209

W. Chen, T.A. Lee, A. Navrotsky, J. Mater. Res. 20 (2005) 144. DOI: https://doi.org/10.1557/JMR.2005.0017

A. Bogicevic, C. Wolverton, Europhys. Lett. 56 (2001) 393. DOI: https://doi.org/10.1209/epl/i2001-00365-x

Z.-P. Li, T. Mori, J. Zou, J. Drennan, Materials Research Bulletin 48 (2013) 807. DOI: https://doi.org/10.1016/j.materresbull.2012.11.073

M. S. Khan, M. S. Islam, D.R. Bates, J. Mater. Chem. 8 (1998) 2299. DOI: https://doi.org/10.1039/a803917h

R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale, Solid State Ionics 177 (2006) 1251. DOI: https://doi.org/10.1016/j.ssi.2006.06.030

P. Demontis, S. Spanu, G.B. Suffritti, J. Chem. Phys. 114 (2001) 7980. DOI: https://doi.org/10.1063/1.1364638

Z.-P. Li, T. Mori, F. Ye, D. Ou, G. J. Auchterlonie, J. Zou, J. Drennan, J. Phys. Chem. C 116 (2012) 5435. [24] P.K. Schelling, S.R. Phillpot, J. Am. Ceram. Soc. 84 (2001) 2997. DOI: https://doi.org/10.1021/jp211579f

W. Zajac, J. Molenda, Solid State Ionics 179 (2008) 154. DOI: https://doi.org/10.1016/j.ssi.2007.12.047

D.R. Ou, T. Mori, F. Ye, M. Takahashi, J. Zou, J. Drennan, Acta Materialia 54 (2006) 3737. DOI: https://doi.org/10.1016/j.actamat.2006.04.003

S.P.S. Badwal, Solid State Ionics 52 (1992) 32. DOI: https://doi.org/10.1016/0167-2738(92)90088-7

M.J.D. Rushton, A. Chroneos, S.J. Skinner, J.A. Kilner, R.W. Grimes, Solid State Ionics 230 (2013) 37. [29] Y. Oishi, K. Ando, Transport in Nonstoichiometric Compounds 129 (1985) 189. DOI: https://doi.org/10.1016/j.ssi.2012.09.015

Downloads

Published

13-08-2019

How to Cite

[1]
L. T. Lam, V. V. Hung, and N. T. Hai, “Study of Oxygen Vacancy Diffusion in Yttria-doped Ceria and Yttria-stabilized Zirconia by Statistical Moment Method”, Comm. Phys., vol. 29, no. 3, p. 263, Aug. 2019.

Issue

Section

Papers
Received 04-04-2019
Accepted 10-07-2019
Published 13-08-2019

Most read articles by the same author(s)

1 2 > >>