A New Solution to the Structure Equation in Noncommutative Spacetime
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/1/3606Keywords:
non-commutative geometry, gravity, general relativity, Kaluza-Klein theory, Cartan formalismAbstract
In this paper, starting from the common foundation of Connes' noncommutative geometry ( NCG)\cite{Connes1, Connes2, CoLo, Connes3}, various possible alternatives in the formulation of atheory of gravity in noncommutative spacetime are discussed indetails. The diversity in the final physical content of the theory is shown to be the consequence of the arbitrary choices in each construction steps. As an alternative in the last step, when the structure equations are to be solved, a minimal set of constraints on the torsion and connection is found to determine all the geometric notions in terms of the metric. In the Connes-Lott model of noncommutative spacetime, in order to keep the full spectrum of the discretized Kaluza-Klein theory \cite{VW2}, it is necessary to include the torsion in the generalized Einstein-Hilbert-Cartan action.Downloads
Metrics
References
bibitem{Connes1} A.Connes, {it Noncommutative Geometry}, (Academic Press,
; A.Connes, {it Noncommutative Differential Geometry}, Publ.
I.H.E.S. {bf 62} (1986), 257; A.Connes, { it Noncommutative
Geometry and Physics} in {it Gravitation and Quantizations}, Les
Houches, Session LVII, (Elsevier Science B.V. 1995).
bibitem{Connes2} A.Connes, {it Essay on physics and noncommutative geometry},
in {it The interface of mathematics and particle physics}, Oxford
Univ.Press ( 1990), 9.
bibitem{CoLo} A.Connes and J.Lott Nucl.Phys.{bf B18} Suppl.(1990),
; A.Connes and J.Lott, {it The metric Aspect on Nonncommutative
Geometry}, in {it Proceedings of the 1991 Carges Summer School},
ed.J.Fr"ohlich et al.( Plenum, 1992).
bibitem{Connes3} A.Connes, {it Gravity coupled with matter and
the foundation of noncommutative geometry}, hep-th/8603053 (1996).
bibitem{Kast} D.Kastler, Commun.Math.Phys. {bf 166} (1995), 633. DOI: https://doi.org/10.1007/BF02099890
bibitem{COQUE} R.Coquereaux, J.Geom.Phys. {bf 6} (1989),425. DOI: https://doi.org/10.1016/0393-0440(89)90013-2
bibitem{Madore} J.Madore, {it An Introduction to Noncommutative Geometry and its
Physical Applications}, ( LMS Lecture Notes 206, 1995).
bibitem{VW2} N.A.Viet and K.C.Wali, Intl. J. Modern Phys., {bf A11} (1996), 2403. DOI: https://doi.org/10.1142/S0217751X96001206
bibitem{Landi} G.Landi {it An Introduction to Noncommutative
Spaces and their Geometries},( Springer-Verlag 1997).
bibitem{CHAM}
A.H.Chamseddine, G.Felder and Fr"ohlich Comm.Math.Phys. {bf
},(1993), 205; A.H.Chamseddine, J.Fr"ohlich, O.Grandjean,
J.Math.Phys. {bf 36} (1995), 6255.
bibitem{WODZICKI} W.Kalau and M.Walze, J.Geom.Phys. {bf 16} (1995), 327. DOI: https://doi.org/10.1016/0393-0440(94)00032-Y
bibitem{LVW} G.Landi, Nguyen Ai Viet, K.C.Wali Phys.Letters {bf B326} (1994), 32.
bibitem{VW1} Nguyen Ai Viet, K.C.Wali, Intl. J. Modern Phys., {bf A11} (1996), 533. DOI: https://doi.org/10.1142/S0217751X96000249
bibitem{VW3} Nguyen Ai Viet, K.C.Wali, {it Matter Fields in
Curved Space-Time} in {it Theoretical High-Energy Physics
MRST'2000}, ed. C.R.Hagen (2000), 27.
bibitem{CHIRAL} Nguyen Ai Viet and K.C.Wali {it Chiral spinors and Gauge Fields in curved
noncommutative space-time}, hep-th/0212064 ( to be published).
bibitem{V1} Nguyen Ai Viet {it Predictions of Noncommutative
space-time} in MRST'94 What Next? Exploring the Future of
High-Energy Physics, ed.K.R.Cudel et al,(World Scientific, 1994).
bibitem{V2} Nguyen Ai Viet, (To memory of E.Wigner) Heavy-Ion Phys.
{bf 1} (1995) 263.
bibitem{wheeler} Ch.W.Misner, K.S.Thorne and J.A.Wheeler {it Gravitation},
(W.H.Freeman and Company, New York, 1973).
bibitem{wald} R.M.Wald {it General Relativity}, (The University of Chicago Press,
Chicago and London, 1984).
bibitem{Naka} M.Nakahara, {it Geometry, Topology and Physics}, (
Institute of Physics Press, 1992). DOI: https://doi.org/10.1049/ee.1992.0057
bibitem{Eguchi} T.Eguchi, P.B.Gilkey and A.J.Hanson, {it
Gravitation, Gauge theories and Differential Geometry} Physics
Reports {bf 66} No 6 (1990).
bibitem{Dubois} M.Dubois-Viollete {it Lectures on graded
Differential algebras and Noncommutative Geometry} LPT-ORSAY
/100, qa/9912017 ( 1999).
bibitem{SITARZ} A.Sitarz Class.Quant.Grav. {bf 11} (1994) DOI: https://doi.org/10.1088/0264-9381/11/8/017
bibitem{Klim} C.Klimcik, A.Pompos, V.Soucek, Lett.Math.Phys. {bf
} (1994), 259.
bibitem{CHINA} Bin Chen, Takesi Saito, Ke Wu,
Prog.Theor.Phys. {bf 92}, (1994), 881; G. Konisi, Takesi Saito,
Ke Wu, Prog.Theor.Phys. {bf 93}, (1995), 621.
bibitem{LiConKK} M.Dubois-Violette, R.Kerner, J.Madore,
J.Math.Phys. {bf 31} (1990), 316; J.Madore, Phys.Rev. {D41} DOI: https://doi.org/10.1063/1.528916
(1990), 3790; M.Dubois-Violette, J.Madore, T.Masson, J.Mourad,
J.Mourad, J.Math.Phys. {bf 37} (1996), 4089; J.Madore, DOI: https://doi.org/10.1063/1.531618
Class.Quant.Grav. {bf 13} (1996), 2109; J.Mourad, DOI: https://doi.org/10.1088/0264-9381/13/8/008
Class.Quant.Grav. {bf 12} (1995), 965. DOI: https://doi.org/10.1088/0264-9381/12/4/007
bibitem{KK} Th.Kaluza, Sitzuuza, Sitzungsber. Preuss. Akad. Wiss. Phys.
Math. Klasse 966 (1921);O.Klein, Z.F. Physik {bf 37} (1926) 895; DOI: https://doi.org/10.1007/BF01397481
Y.Thirry, Comptes Rendus (Paris) {bf 226} (1948) 216.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 12-03-2014