Structural and Optical Properties of Samples SrTi\(_{1-x}\)M\(_{x}\)O\(_3\) (M = Co, Ni) Synthesized by Sol-gel Method

Doan Thi Thuy Phuong, Nguyen Van Minh, Chu Tien Dung
Author affiliations


  • Doan Thi Thuy Phuong University of Transport and Communication, Lang Thuong, Dong Da, Hanoi
  • Nguyen Van Minh Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
  • Chu Tien Dung Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam



SrTiO3, sol-gel, the absorption spectra, Raman spectra, band structure, the density of states (DOS) ), the high spin state (HS), low spin state (LS)


By sol-gel method, we synthesized SrTi\(_{1-x}\)M\(_{x}\)O\(_3\) (M = Co, Ni; x = 0.0; 0.1; 0.2; 0.3; 0.4; 0.5) nano particles and investigated structure of Raman spectrum, absorption spectra, structural diagram of energy area and their density of states. The results showed that the average size of nanoparticles was about 10-30 nm. Absorption edge of each sample depended on the content of substitution of Co, Ni.  Besides, the content of ion substitution also had influence on the structure, Raman  spectrum, structural diagram of energy area  and state density of samples. The results indicated that Co and Ni ions were substituted for position of Ti in the net cell, which changed structure of the material and reduced band gap of the synthesized materials and increases its conductivity.


Download data is not yet available.


Metrics Loading ...


Perry C.H., Fertel J.H., McNelly T.F., (1967), “Temperature Dependence of the Raman Spectrum of SrTiO3 and KTaO3”, J. Chem. Phys. 47 (5), pp. 1619-1625. DOI:

Ostapchuk T., Petzelt J., Železný V., Pashkin A., Pokorný J., Drbohlav I., Kužel R., Rafaja D., Gorshunov B.P., Dressel M., Ohly Ch., Eifert S.H., Waser R., (2002), “Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films”, Phys. Rev. B, 66 (23), 235406 (12). DOI:

Reddy Y.K.V., Mergel D., Osswald W., (2006), “Impedance spectroscopy study of RuO2/SrTiO3 thin film capacitors prepared by radio-frequency magnetron sputtering”, Materials Science and Engineering B 130, pp. 237–245. DOI:

Rodewald S., Fleig J., and Maier J., (2001), “Microcontact Impedance Spectroscopy at Single Grain Boundaries in Fe-Doped SrTiO3 Polycrystals”, J. Am. Ceram. Soc., 84, pp. 521-530. DOI:

Rothschild A., Tuller H.L., (2006), “Gas sensors: new materials and processing approaches”, J. Eletroceram. 17, pp. 1005–12. DOI:

Vracar M., Kuzmin A., Merkle R., Purans J., Kotomin E.A., Maier J., Mathon O., (2007), “Jahn-Teller distortion around Fe4+ in Sr(FexTi1−x)O3−δ from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy”, Physical Review B 76, 174107 (12). DOI:

Rothschild A., Menesklou W., Harry L.T., and Tiffee E. I., (2006), “Electronic structure, sefect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions”, Chem. Mater. 18 (16), pp. 3651-3659. DOI:

Rout S.K., Panigrahi S., Bera J., (2005), “Study on electrical properties of Ni-doped SrTiO3 ceramics using impedance spectroscopy”, Bull. Mater. Sci., Vol. 28, No. 3, pp. 275-279. DOI:

Kumar A.S., Suresh P., Kumar M.M., Srikanth H., Post M.L., Sahner K., Moos R., Srinath S., (2010), “Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films”, Journal of Physics: Conference Series 200, 092010. DOI:

Lee J.S., Khim Z.G., Park Y.D., Norton D.P., Theodoropoulou N.A., Hebard A.F., Budai J.D., Boatner L.A., Pearton S.J., Wilson R.G., (2003), “Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3”, Solid-State Electronics, Vol. 47, No. 12, pp. 2225-2230. DOI:

Malo S., Maignan A., (2004), “Structural, magnetic, and transport properties of the SrTi1-xCoxO3-δ Perovskite (0 ≤ x ≤ 0.9)”, Inorg. Chem., Vol. 43, No.25, pp. 8169-8175. DOI:

Tien T.Y., Hummel F.A., (1967), “Solid Solution in the System SrTiO3”, Trans, Br. Ceram. Soc., 66, pp. 233-245.

Huijben M., Brinkman A., Koster G., Rijnders G., Hilgenkamp H., and Blank Dave H.A., (2009), “Structure-Property Relation of SrTiO3–LaAlO3 Interfaces”, Advanced Materials, 21 (17), pp. 1665-1677. DOI:

Kalkhoran B.R., (2004), “Microstructural Studies on the Reoxidation Behavior of Nb-doped SrTiO3 Ceramics”, Dissertation an der Universität Stuttgart.

Shanthi N., Sarma D.D., (1998), “Electronic structure of electron doped SrTiO3: SrTiO3-δ and Sr1-xLaxTiO3”, Phys. Rev. B, 57, Iss. 4, pp. 2153-2158. DOI:

16. Tenne D.A., Soukiassian A., Zhu M.H., Clark A.M., Xi X.X., Choosuwan H., He Q., Guo R., Bhalla A.S., (2003), “Raman study of BaxSr1-xTiO3 films: Evidence for the existence of polar nanoregions” Phys. Rev. B, Vol. 67, Iss. 1, 012302. DOI:

. Balaya P., Ahrens M., Kienle L., and Maier J., (2006), “Synthesis and characterization of nanocrystalline SrTiO3”, J. Am. Ceram. Soc., 89 (9), pp. 2804-2811. DOI:

. Silva L.F.D., Bernardi M.I.B., Maia L.J.Q., Frigo G.J.M., Mastelaro V.R., (2009), “Synthesis and thermal decomposition of SrTi1−xFexO3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method”, J. Therm Anal Calorim, Vol. 97, No.1 pp. 173-177. DOI:

Pascanuta C., Dragoeb N., Berthet P., (2006), “Magnetic and transport properties of cobalt-doped perovskites SrTi1−xCoxO3 (x ≤ 0.5)”, Journal of Magnetism and Magnetic Materials, Vol. 305, Iss. 1, pp. 6-11. DOI:

Ang C., Yub Z., (2002), “Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3” J. Appl. Phys., Vol. 91, No. 3, pp. 1487-1494. DOI:

Ouillon R., Lucarre P., Ranson P., Pruzan Ph., Mishra S.K., Ranjan R., Pandey D.J., (2002), “A Raman scattering study of the phase transitions in SrTiO3 and in the mixed system (Sr1-xCax)TiO3 at ambient pressure from T 300 K down to 8 K”, Phys.: Condens. Matter. Vol. 14, No.8, pp. 2079-2092. DOI:

Soledade L. E. B., Longo E., Leite E. R., Pontes F. M., F.., Lanciotti C. E. M. Campos, Pizani P. S., and J. Varela A., (2002), “Room-temperature photoluminescence in amorphous SrTiO3- the influence of acceptor-type dopants”. Appl. Phys. A 75(5), pp. 629. DOI:

Gupta G., Nautiyal T., and Auluck S., (2004), “Optical properties of the compounds BaTiO3 and SrTiO3”, Phys. Rev. B, Vol. 69, 052101 (3).

Benthem K.V., French R.H., Sigle W., Elsasser C., Ruhle M., (2001), “Valence electron energy loss study of Fe-doped SrTiO3 and a Σ13 boundary: electronic structure and dispersion forces”, Utramicroscopy 86, pp. 303-318. DOI:

Matsumoto Y., Takahashi R., Murakami M., Koida T., Fan X. J., Hasegawa T., Fukumura T., Kawasaki M., Koshihara S. Y., Koinuma H., (2001), “Ferromagnetism in Co-doped TiO2 rutile thin films grown by laser molecular beam epitaxy”, Jpn. J. Appl. Phys., Part 2, 40, pp. L1204-L1206. DOI:

Wang Y., Doren D.J., (2005), “First-principles calculations on TiO2¬¬ doped by Ni, Nd, and vacacy”, Solid State Communications, 136, pp. 186-189. DOI:

Chang C.H., Shen Y.H., (2006), “Synthesis and characterization of chromium doped SrTiO3 photocatalyst”, Materials Letters 60, pp.129-132. DOI:

Zhang H., Chen G., Li Y., and Teng Y., (2009), “Electronic structure and photocatalytic properties of copper-doped CaTiO3”, International Journal of Hydrogen Energy, Vol. 35, Iss. 7, pp. 2713-2716. DOI:




How to Cite

D. T. T. Phuong, N. V. Minh, and C. T. Dung, “Structural and Optical Properties of Samples SrTi\(_{1-x}\)M\(_{x}\)O\(_3\) (M = Co, Ni) Synthesized by Sol-gel Method”, Comm. Phys., vol. 23, no. 3, p. 263, Dec. 2013.



Received 16-10-2013
Published 06-12-2013