Structural and optical properties of SrTiO3 nano material obtained by sol-gel method

Doan Thi Thuy Phuong, Nguyen Xuan Huy, Le Thi Mai Oanh, Do Danh Bich, Trieu Thi Minh Chau
Author affiliations

Authors

  • Doan Thi Thuy Phuong
  • Nguyen Xuan Huy Center for Nano Science and Technology, Hanoi University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam
  • Le Thi Mai Oanh Center for Nano Science and Technology, Hanoi University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam and Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam
  • Do Danh Bich Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam
  • Trieu Thi Minh Chau Faculty of Basic Sciences, University of Transport and Communications, 3 Cau Giay Road, Dong Da District, Hanoi, 100000, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/27/2/9453

Keywords:

ABO3, SrTiO3, sol-gel process, structure analysis

Abstract

SrTiO3 nano particles were prepared by sol-gel process in order to optimize the temperature condition to obtain good quality material for different applications. The thermal treating condition was selected out through XRD, FTIR and Raman analysis of the synthesized power. The structural and optical property of the powder were studied carefully with XRD, SEM, FTIR, Raman and UV-Vis measurement. At optimized annealing temperature (from 900 oC to 1000 oC), the synthesized STO nano particles have good structure. The shape, size and optical band gap of obtained material are suitable for further applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kwon S.K., Park J.H., Min B.I., (2000), “Charge and orbital ordering and spin-state transition driven by structural distortion in YBaCo2O5”, Phys. Rev. B 62, pp. R14637-R14640. DOI: https://doi.org/10.1103/PhysRevB.62.R14637

Cho S.G., Johnson P.F., (1994), “Evolution of the microstructure of undoped and Nb-doped SrTiO3”, J. Mater. Sci., Vol. 29, No. 18, pp. 4866-4874. DOI: https://doi.org/10.1007/BF00356536

Liu J.W., Chen G., Li Z.H., and Zhang Z.G., (2006), “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3”, Journal of Solid State Chemistry, 179, pp. 3704-3708. DOI: https://doi.org/10.1016/j.jssc.2006.08.014

Daniels J., and Hardtl K.H., (1976), “Electrical conductivity at high temperatures of donor-doped BaTiO3 ceramic” Phillips Res. Repts., 31, pp. 489-504.

Fleig J., Rodewald S., and Maier J., (2000), “Microcontact Impedance Measurements of Individual Highly Resistive Grain Boundaries: General Aspects and Application to Acceptor-Doped SrTiO3,” J. Appl. Phys., 87, pp. 2372-81. DOI: https://doi.org/10.1063/1.372189

Perry C.H., Fertel J.H., McNelly T.F., (1967), “Temperature Dependence of the Raman Spectrum of SrTiO3 and KTaO3”, J. Chem. Phys. 47 (5), pp. 1619-1625. DOI: https://doi.org/10.1063/1.1712142

Malo S., Maignan A., (2004), “Structural, magnetic, and transport properties of the SrTi1-xCoxO3-δ Perovskite (0 ≤ x ≤ 0.9)”, Inorg. Chem., Vol. 43, No.25, pp. 8169-8175. DOI: https://doi.org/10.1021/ic0490371

Rodewald S., Fleig J., and Maier J., (2001), “Microcontact Impedance Spectroscopy at Single Grain Boundaries in Fe-Doped SrTiO3 Polycrystals”, J. Am. Ceram. Soc., 84, pp. 521-530. DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00693.x

Silva L.F.D., Bernardi M.I.B., Maia L.J.Q., Frigo G.J.M., Mastelaro V.R., (2009), “Synthesis and thermal decomposition of SrTi1−xFexO3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method”, J. Therm Anal Calorim, Vol. 97, No.1 pp. 173-177. DOI: https://doi.org/10.1007/s10973-009-0241-y

Muralidharan M., et al., (2015), "Carrier mediated ferromagnetism in Cr doped SrTiO3 compounds", J Mater Sci: Mater Electron. DOI: https://doi.org/10.1007/s10854-015-3223-9

Hongwei Bai., et al., (2013), "Facile Fabrication of TiO2/SrTiO3 Composite Nanofibers by Electrospinning for High Efficient H2 Generation", J. Am. Ceram. Soc., 96 [3], pp 942-949. DOI: https://doi.org/10.1111/jace.12071

Tieping Cao., et al., (2011), "A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity", American Chemical Society., 27, 2946-2952. DOI: https://doi.org/10.1021/la104195v

Han J., et al., (2007), "Dielectric response of soft mode in ferroelectric SrTiO3", Appl. Phys. Lett. , 90, pp. 031104-06. DOI: https://doi.org/10.1063/1.2431448

Petzelt J., et. al., (2001), "Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries", Phys. Rev., B 64, pp. 184111-20. DOI: https://doi.org/10.1103/PhysRevB.64.184111

F.P. Koffyberg, K. Dwight, A. Wold, (1979) “Interband transitions of semiconducting oxides determined from photoelectrolysis spectra,” Solid State Commun., 30, 433. DOI: https://doi.org/10.1016/0038-1098(79)91182-7

Y. I. Kim, S. J. Atherton, E. S. Brigham, T. E. Mallouk, (1993) “Sensitized Layered Metal Oxide Semiconductor Particles for Photochemical Hydrogen Evolution from Nonsacrificial Electron Donors,” Phys. Chem., 97, 11802. DOI: https://doi.org/10.1021/j100147a038

D. L. Wood and J. Tauc, (1972) “Weak Absorption Tails in Amorphous Semiconductors,” Phy. Rev. B, Vol. 5, No. 8, pp. 3144-3151. DOI: https://doi.org/10.1103/PhysRevB.5.3144

Downloads

Published

24-08-2017

How to Cite

[1]
D. T. T. Phuong, N. X. Huy, L. T. M. Oanh, D. D. Bich, and T. T. M. Chau, “Structural and optical properties of SrTiO3 nano material obtained by sol-gel method”, Comm. Phys., vol. 27, no. 2, p. 173, Aug. 2017.

Issue

Section

Papers
Received 01-04-2017
Accepted 31-07-2017
Published 24-08-2017