Structural and optical properties of SrTiO3 nano material obtained by sol-gel method
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/2/9453Keywords:
ABO3, SrTiO3, sol-gel process, structure analysisAbstract
SrTiO3 nano particles were prepared by sol-gel process in order to optimize the temperature condition to obtain good quality material for different applications. The thermal treating condition was selected out through XRD, FTIR and Raman analysis of the synthesized power. The structural and optical property of the powder were studied carefully with XRD, SEM, FTIR, Raman and UV-Vis measurement. At optimized annealing temperature (from 900 oC to 1000 oC), the synthesized STO nano particles have good structure. The shape, size and optical band gap of obtained material are suitable for further applications.
Downloads
Metrics
References
Kwon S.K., Park J.H., Min B.I., (2000), “Charge and orbital ordering and spin-state transition driven by structural distortion in YBaCo2O5”, Phys. Rev. B 62, pp. R14637-R14640. DOI: https://doi.org/10.1103/PhysRevB.62.R14637
Cho S.G., Johnson P.F., (1994), “Evolution of the microstructure of undoped and Nb-doped SrTiO3”, J. Mater. Sci., Vol. 29, No. 18, pp. 4866-4874. DOI: https://doi.org/10.1007/BF00356536
Liu J.W., Chen G., Li Z.H., and Zhang Z.G., (2006), “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3”, Journal of Solid State Chemistry, 179, pp. 3704-3708. DOI: https://doi.org/10.1016/j.jssc.2006.08.014
Daniels J., and Hardtl K.H., (1976), “Electrical conductivity at high temperatures of donor-doped BaTiO3 ceramic” Phillips Res. Repts., 31, pp. 489-504.
Fleig J., Rodewald S., and Maier J., (2000), “Microcontact Impedance Measurements of Individual Highly Resistive Grain Boundaries: General Aspects and Application to Acceptor-Doped SrTiO3,” J. Appl. Phys., 87, pp. 2372-81. DOI: https://doi.org/10.1063/1.372189
Perry C.H., Fertel J.H., McNelly T.F., (1967), “Temperature Dependence of the Raman Spectrum of SrTiO3 and KTaO3”, J. Chem. Phys. 47 (5), pp. 1619-1625. DOI: https://doi.org/10.1063/1.1712142
Malo S., Maignan A., (2004), “Structural, magnetic, and transport properties of the SrTi1-xCoxO3-δ Perovskite (0 ≤ x ≤ 0.9)”, Inorg. Chem., Vol. 43, No.25, pp. 8169-8175. DOI: https://doi.org/10.1021/ic0490371
Rodewald S., Fleig J., and Maier J., (2001), “Microcontact Impedance Spectroscopy at Single Grain Boundaries in Fe-Doped SrTiO3 Polycrystals”, J. Am. Ceram. Soc., 84, pp. 521-530. DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00693.x
Silva L.F.D., Bernardi M.I.B., Maia L.J.Q., Frigo G.J.M., Mastelaro V.R., (2009), “Synthesis and thermal decomposition of SrTi1−xFexO3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method”, J. Therm Anal Calorim, Vol. 97, No.1 pp. 173-177. DOI: https://doi.org/10.1007/s10973-009-0241-y
Muralidharan M., et al., (2015), "Carrier mediated ferromagnetism in Cr doped SrTiO3 compounds", J Mater Sci: Mater Electron. DOI: https://doi.org/10.1007/s10854-015-3223-9
Hongwei Bai., et al., (2013), "Facile Fabrication of TiO2/SrTiO3 Composite Nanofibers by Electrospinning for High Efficient H2 Generation", J. Am. Ceram. Soc., 96 [3], pp 942-949. DOI: https://doi.org/10.1111/jace.12071
Tieping Cao., et al., (2011), "A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity", American Chemical Society., 27, 2946-2952. DOI: https://doi.org/10.1021/la104195v
Han J., et al., (2007), "Dielectric response of soft mode in ferroelectric SrTiO3", Appl. Phys. Lett. , 90, pp. 031104-06. DOI: https://doi.org/10.1063/1.2431448
Petzelt J., et. al., (2001), "Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries", Phys. Rev., B 64, pp. 184111-20. DOI: https://doi.org/10.1103/PhysRevB.64.184111
F.P. Koffyberg, K. Dwight, A. Wold, (1979) “Interband transitions of semiconducting oxides determined from photoelectrolysis spectra,” Solid State Commun., 30, 433. DOI: https://doi.org/10.1016/0038-1098(79)91182-7
Y. I. Kim, S. J. Atherton, E. S. Brigham, T. E. Mallouk, (1993) “Sensitized Layered Metal Oxide Semiconductor Particles for Photochemical Hydrogen Evolution from Nonsacrificial Electron Donors,” Phys. Chem., 97, 11802. DOI: https://doi.org/10.1021/j100147a038
D. L. Wood and J. Tauc, (1972) “Weak Absorption Tails in Amorphous Semiconductors,” Phy. Rev. B, Vol. 5, No. 8, pp. 3144-3151. DOI: https://doi.org/10.1103/PhysRevB.5.3144
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 31-07-2017
Published 24-08-2017