Size dependence of melting process of armchair hexagonal boron nitride nanoribbon

Author affiliations




Melting of armchair hexagonal boron nitride nanoribbon;, Size dependence;, Heating rate dependence;, Formation of liquid-like atoms.


The dependence on the initial configuration size of armchair hexagonal boron nitride nanoribbon (h-BNNR) is investigated by molecular dynamics simulation. The initial configuration size of armchair h-BNNR containing 10000, 20000, and 30000 identical atoms of B and N is heated from 50 K to 6000 K via Tersoff potentials to study the dependence on the initial configuration size of the phase transition from crystal to liquid of armchair h-BNNR. Some results can be listed: the phase transition exhibits a first-order type; the phase transition from crystal to liquid states depends on the initial configuration size; the melting points of 10000, 20000, and 30000 atoms are 3640 K, 4000 K, and 4400 K, respectively; the dependence on the heating rate of the armchair h-BNNR is considered for the case of 20000 atoms; in this study range, the melting point decreases as the heating rate decreases; the atomic mechanism of melting process is studied by analyzing the parameter  and the appearance of the liquid-like atoms based on the critical value ; the critical value  is used to classify solid-like and liquid-like atoms; the appearance of liquid-like atoms upon heating starts from the edges and grow inward; at the phase transition temperature, almost the entire crystal structure of the armchair h-BNNR configuration collapses.


Download data is not yet available.


Metrics Loading ...


L. Liu, Y. Feng, and Z. Shen, Structural and electronic properties of h-BN, Phys. Rev. B, 68 (2003) 104102. DOI:

A. Bozkurt, G.Ö. Çakal, Ş. Kaya-Keleş, and A. Kaşkaş, Comparison of h-BN material with metal implants in radiotherapy applications: Characterization and dose distribution measurements in LINAC, Radiation Physics and Chemistry, 212 (2023) 111152. DOI:

S. Ngamprapawat, J. Kawase, T. Nishimura, K. Watanabe, T. Taniguchi, and K. Nagashio, From h‐BN to Graphene: Characterizations of Hybrid Carbon‐Doped h‐BN for Applications in Electronic and Optoelectronic Devices, Advanced Electronic Materials, (2023) 2300083. DOI:

H. Liu, J. Qin, X. Yang, C. Lv, W. Huang, F. Li, C. Zhang, Y. Wu, L. Dong, and C. Shan, Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing, Nano Research, (2023). DOI:

A. Kiakojouri, I. Frank, and E. Nadimi, Exploring the dynamics of DNA nucleotides in graphene/h-BN nanopores: insights from ab initio molecular dynamics, Physical Chemistry Chemical Physics, 25 (2023) 13452. DOI:

H. Li, W. Sheng, S.A. Haruna, Q. Bei, W. Wei, M.M. Hassan, and Q. Chen, Recent progress in photoelectrochemical sensors to quantify pesticides in foods: Theory, photoactive substrate selection, recognition elements and applications, TrAC Trends in Analytical Chemistry, (2023) 117108. DOI:

M. Chae, D. Lee, S. Kim, and H.-d. Kim, NO Sensing Properties of BN-based Memristor Sensor Array for Real-time NO Monitoring-Systems, Sensors and Actuators B: Chemical, (2023) 134373. DOI:

M. Qiu, Z. Jia, M. Yang, K. Nishimura, C.-T. Lin, N. Jiang, and Q. Yuan, High detectivity solar blind photodetector based on mechanical exfoliated hexagonal boron nitride films, Nanotechnology, 34 (2023) 285204. DOI:

S. Kim, B. Kim, S. Park, W.S. Chang, H. Kang, S. Kim, H. Lee, and S. Kim, Hysteretic behavior of all CVD h-BN/graphene/h-BN heterostructure field-effect transistors by interfacial charge trap, Surfaces and Interfaces, 36 (2023) 102615. DOI:

S. Abdous, M. Derradji, Z. Mekhalif, K. Khiari, O. Mehelli, and Y.B. Cherif, Advances in Polymeric Neutron Shielding: The Role of Benzoxazine-h-BN Nanocomposites in Nuclear Protection, Radiation Research, (2023). DOI:

P.A. Dróżdż, M. Haras, A. Przewłoka, A. Krajewska, M. Filipiak, M. Słowikowski, B. Stonio, K. Czerniak-Łosiewicz, Z. Mierczyk, and T. Skotnicki, A graphene/h-BN MEMS varactor for sub-THz and THz applications, Nanoscale, (2023). DOI:

Z. Wang, L. Wei, S. Wang, T. Wu, L. Sun, C. Ma, X. Tao, and S. Wang, 2D SiP2/h-BN for a Gate-Controlled Phototransistor with Ultrahigh Sensitivity, ACS Applied Materials & Interfaces, 15 (2023) 15810. DOI:

R. Wang, J. Lu, X. Wu, J. Peng, and J.-H. Jiang, Topological Transitions Enhance the Performance of Twisted Thermophotovoltaic Systems, Physical Review Applied, 19 (2023) 044050. DOI:

H.T. Nguyen, Structural evolution of in-plane hybrid graphene/hexagonal boron nitride heterostructure upon heating, Journal of Molecular Graphics and Modelling, (2023) 108579. DOI:

Q. Fang, Z. Pang, Q. Ai, Y. Liu, T. Zhai, D. Steinbach, G. Gao, Y. Zhu, T. Li, and J. Lou, Superior mechanical properties of multilayer covalent-organic frameworks enabled by rationally tuning molecular interlayer interactions, Proceedings of the National Academy of Sciences, 120 (2023) e2208676120. DOI:

L. Gong, H. Shi, S. He, J. Yang, Q. Han, Y. Ren, Y. Zhao, and Z. Jiang, Thermal conductivity and interfacial thermal conductivity of complex boron nitride nanoribbons, Journal of Thermal Stresses, 46 (2023) 198. DOI:

R. Yogi and N.K. Jaiswal, Adsorption of CO gas molecules on zigzag BN/AlN nanoribbons for nano sensor applications, Physics Letters A, 383 (2019) 532. DOI:

M.Z. Bazant, E. Kaxiras, and J.F. Justo, Environment-dependent interatomic potential for bulk silicon, Phys. Rev. B, 56 (1997) 8542. DOI:

J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, and S. Yip, Interatomic potential for silicon defects and disordered phases, Phys. Rev. B, 58 (1998) 2539. DOI:

N. Marks, Generalizing the environment-dependent interaction potential for carbon, Phys. Rev. B, 63 (2000) 035401. DOI:

F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31 (1985) 5262. DOI:

J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Let., 56 (1986) 632. DOI:

B.W. Dodson, Development of a many-body Tersoff-type potential for silicon, Phys. Rev. B, 35 (1987) 2795. DOI:

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988) 6991. DOI:

D.W. Brenner, Tersoff-type potentials for carbon, hydrogen and oxygen, MRS Online Proceedings Library (OPL), 141 (1988). DOI:

J.R. Chelikowsky and J. Phillips, Surface and thermodynamic interatomic force fields for silicon clusters and bulk phases, Phys. Rev. B, 41 (1990) 5735. DOI:

J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39 (1989) 5566. DOI:

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1. DOI:

S. Le Roux and V. Petkov, ISAACS–interactive structure analysis of amorphous and crystalline systems, J. Appl. Crystallogr., 43 (2010) 181. DOI:

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 14 (1996) 33. DOI:

H.T. Nguyen and T.T.T. Hanh, Melting process of zigzag boron nitride nanoribbon, Physica E: Low-dimensional Systems and Nanostructures, 106 (2019) 95. DOI:




How to Cite

H. T. T. Nguyen, V. L. Tran, and T. T. Ngo, “Size dependence of melting process of armchair hexagonal boron nitride nanoribbon”, Comm. Phys., vol. 34, no. 2, p. 151, Jun. 2024.



Received 24-11-2023
Accepted 22-05-2024
Published 11-06-2024