Size and Layer Dependence of Hybrid Graphene/h-BN Models Upon Heating
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/2/13934Keywords:
Hybrid graphene/hexagonal Boron Nitride models, Layer dependence, Melting range, Liquidlike atoms,Abstract
Different models contained graphene layer are studied via molecular dynamics simulation. Models are heated up from 50K to 8000K via Tersoff and Lennard-Jones potentials to have an entire picture about the evolution of graphene layer in the models upon heating. Various thermodynamic quantities, structural characteristics, and the occurrence of liquidlike atoms are studied, such as, the total energy per atom, the heat capacity per atom, the radial distribution functions, and the appearance of liquid atoms upon heating. The phase transition exhibits the first order. The melting point of graphene layer depends on the number of layers in the models while it does not depend on the size in the range of this study. The melting process of hybrid graphene and hexagonal boron nitride (h-BN) satisfies the first step towards Devil's staircase type phase transition. The melting point of hybrid graphene/h-BN is close to the one of experiment of graphite.Downloads
Metrics
References
D. Jin-Xiang, Z. Xiao-Kang, Y. Qian, W. Xu-Yang, C. Guang-Hua, and H. De-Yan, Chin. Phys. B 18 (2009) DOI: https://doi.org/10.1088/1674-1056/18/9/066
C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg, Nanotechnology 20 (2009) 385707. DOI: https://doi.org/10.1088/0957-4484/20/38/385707
K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278 (1997) 653. DOI: https://doi.org/10.1126/science.278.5338.653
W.Q. Han, W. Mickelson, J. Cumings, and A. Zettl, Appl. Phys. Lett. 81 (2002) 1110. DOI: https://doi.org/10.1063/1.1498494
T. Kawasaki, T. Ichimura, H. Kishimoto, A. A. Akbar, T. Ogawa, and C. Oshima, Surf. Rev. Lett. 9 (2002) 1459. DOI: https://doi.org/10.1142/S0218625X02003883
T. Martins, R. d. Miwa, A.J. Da Silva, and A. Fazzio, Phys. Rev. Let. 98 (2007) 196803. DOI: https://doi.org/10.1103/PhysRevLett.98.196803
A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, and S. Roche, Phys. Rev. Let. 101 (2008) 036808. DOI: https://doi.org/10.1103/PhysRevLett.101.036808
X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai, Science 324 (2009) 768. DOI: https://doi.org/10.1126/science.1170335
R. Kaner, J. Kouvetakis, C. Warble, M. Sattler, and N. Bartlett, Mater. Res. Bull. 22 (1987) 399. DOI: https://doi.org/10.1016/0025-5408(87)90058-4
A.Y. Liu, R.M. Wentzcovitch, and M.L. Cohen, Phys. Rev. B 39 (1989) 1760. DOI: https://doi.org/10.1103/PhysRevB.39.1760
Y. Miyamoto, A. Rubio, M.L. Cohen, and S.G. Louie, Phys. Rev. B 50 (1994) 4976. DOI: https://doi.org/10.1103/PhysRevB.50.4976
Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl,
and R. Gronsky, Phys. Rev. B 51 (1995) 11229. DOI: https://doi.org/10.1103/PhysRevB.51.11229
E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80 (1998) 4502. DOI: https://doi.org/10.1103/PhysRevLett.80.4502
D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, Carbon 38 (2000) 2017. DOI: https://doi.org/10.1016/S0008-6223(00)00058-0
D. Golberg, Y. Bando, P. Dorozhkin, and Z.-C. Dong, Mater. Res. Bull. 29 (2004) 38. DOI: https://doi.org/10.1557/mrs2004.15
M. Bokdam, P.A. Khomyakov, G. Brocks, Z. Zhong, and P.J. Kelly, Nano Lett. 11 (2011) 4631. DOI: https://doi.org/10.1021/nl202131q
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, and K.L.
Shepard, Nat. Nanotechnol. 5 (2010) 722. DOI: https://doi.org/10.1038/nnano.2010.172
M. Son, H. Lim, M. Hong, and H.C. Choi, Nanoscale 3 (2011) 3089. DOI: https://doi.org/10.1039/c1nr10504c
S. Tang, G. Ding, X. Xie, J. Chen, C. Wang, X. Ding, F. Huang, W. Lu, and M. Jiang, Carbon 50 (2012) 329. DOI: https://doi.org/10.1016/j.carbon.2011.07.062
S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, and X. Xie, Sci. Rep. 3 (2013) 2666. DOI: https://doi.org/10.1038/srep02666
W. Yang, G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, and D. Shi, Nat. Mater. 12
(2013) 792.
S. Tang, H.Wang, H.S.Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, and F. Huang, Nat. Commun.
(2015) 6499.
K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus,
and T. Palacios, Nano Lett. 12 (2011) 161. DOI: https://doi.org/10.1002/asl.344
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.P. Ma, Z. Zhang, Q. Fu, and L.M. Peng, Nat. Commun. 3
(2012) 699.
G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, and H. S. Shin, Nano Lett. 13 (2013) 1834. DOI: https://doi.org/10.1021/nl400559s
H. Arjmandi-Tash, D. Kalita, Z. Han, R. Othmen, G. Nayak, C. Berne, J. Landers, K. Watanabe, T. Taniguchi,
and L. Marty, J.Phys. Materials. 1 (2018) 015003. DOI: https://doi.org/10.1088/2515-7639/aac66e
M. Kawaguchi, T. Kawashima, and T. Nakajima, Chem. Mater. 8 (1996) 1197. DOI: https://doi.org/10.1021/cm950471y
L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, and L. Balicas, Nat. Mater. 9
(2010) 430.
F. H. Stillinger and T.A. Weber, Phys. Rev. B 31 (1985) 5262. DOI: https://doi.org/10.1103/PhysRevB.31.5262
M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B 56 (1997) 8542. DOI: https://doi.org/10.1103/PhysRevB.56.8542
J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip, Phys. Rev. B 58 (1998) 2539. DOI: https://doi.org/10.1103/PhysRevB.58.2539
N. Marks, Phys. Rev. B 63 (2000) 035401. DOI: https://doi.org/10.1103/PhysRevB.63.035401
M. Finnis and J. Sinclair, Philos. Mag. A 50 (1984) 45. DOI: https://doi.org/10.1080/01418618408244210
M. Baskes, Phys. Rev. Let. 59 (1987) 2666. DOI: https://doi.org/10.1103/PhysRevLett.59.2666
D. Pettifor, Phys. Rev. Let. 63 (1989) 2480. DOI: https://doi.org/10.1103/PhysRevLett.63.2480
D. Pettifor and I. Oleinik, Phys. Rev. B 59 (1999) 8487. DOI: https://doi.org/10.1103/PhysRevB.59.8487
D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Mat.
(2002) 783.
A. C. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105 (2001) 9396. DOI: https://doi.org/10.1021/jp004368u
A. C. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W.A. Goddard, J. Phys. Chem. A 107 (2003) DOI: https://doi.org/10.1021/jp0276303
K. Chenoweth, A.C. Van Duin, and W.A. Goddard, J. Phys. Chem. A 112 (2008) 1040. DOI: https://doi.org/10.1021/jp709896w
J. Tersoff, Phys. Rev. B 37 (1988) 6991. DOI: https://doi.org/10.1103/PhysRevB.37.6991
J. Tersoff, Phys. Rev. B 39 (1989) 5566. DOI: https://doi.org/10.1103/PhysRevB.39.5566
J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Mat. 15 (2003) 5649. DOI: https://doi.org/10.1088/0953-8984/15/32/324
D. W. Brenner, Phys. Rev. B 42 (1990) 9458. DOI: https://doi.org/10.1103/PhysRevB.42.9458
N. Yu and A. A. Polycarpou, J. Colloid Interface Sci. 278 (2004) 428. DOI: https://doi.org/10.1016/j.jcis.2004.06.029
J.W. Kang and H.J. Hwang, J. Phys.: Condens. Mat. 16 (2004) 3901. DOI: https://doi.org/10.1088/0953-8984/16/23/010
S. Plimpton, J. Comput. Phys. 117 (1995) 1. DOI: https://doi.org/10.1006/jcph.1995.1039
V. V. Hoang, L. T. Cam Tuyen, and T. Q. Dong, Philos. Mag. 96 (2016) 1993. DOI: https://doi.org/10.1080/14786435.2016.1185183
S. Gleiman, C.-K. Chen, A. Datye, and J. Phillips, J. Mater. Sci. 37 (2002) 3429. DOI: https://doi.org/10.1023/A:1016502804363
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5
P. Bak, Rep. Prog. Phys. 45 (1982) 587. DOI: https://doi.org/10.1088/0034-4885/45/6/001
A. Savvatimskiy, Carbon 43 (2005) 1115. DOI: https://doi.org/10.1016/j.carbon.2004.12.027
Hang T. T. Nguyen, Carbon Lett. 29 (2019) 521. DOI: https://doi.org/10.1007/s42823-019-00056-6
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 17-03-2020
Published 26-05-2020