Size and Layer Dependence of Hybrid Graphene/h-BN Models Upon Heating

Author affiliations

Authors

  • Hang Thi Thuy Nguyen Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam. http://orcid.org/0000-0002-6459-2389

DOI:

https://doi.org/10.15625/0868-3166/30/2/13934

Keywords:

Hybrid graphene/hexagonal Boron Nitride models, Layer dependence, Melting range, Liquidlike atoms,

Abstract

Different models contained graphene layer are studied via molecular dynamics simulation. Models are heated up from 50K to 8000K via Tersoff and Lennard-Jones potentials to have an entire picture about the evolution of graphene layer in the models upon heating. Various thermodynamic quantities, structural characteristics, and the occurrence of liquidlike atoms are studied, such as, the total energy per atom, the heat capacity per atom, the radial distribution functions, and the appearance of liquid atoms upon heating. The phase transition exhibits the first order. The melting point of graphene layer depends on the number of layers in the models while it does not depend on the size in the range of this study. The melting process of hybrid graphene and hexagonal boron nitride (h-BN) satisfies the first step towards Devil's staircase type phase transition. The melting point of hybrid graphene/h-BN is close to the one of experiment of graphite.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. Jin-Xiang, Z. Xiao-Kang, Y. Qian, W. Xu-Yang, C. Guang-Hua, and H. De-Yan, Chin. Phys. B 18 (2009) DOI: https://doi.org/10.1088/1674-1056/18/9/066

C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg, Nanotechnology 20 (2009) 385707. DOI: https://doi.org/10.1088/0957-4484/20/38/385707

K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278 (1997) 653. DOI: https://doi.org/10.1126/science.278.5338.653

W.Q. Han, W. Mickelson, J. Cumings, and A. Zettl, Appl. Phys. Lett. 81 (2002) 1110. DOI: https://doi.org/10.1063/1.1498494

T. Kawasaki, T. Ichimura, H. Kishimoto, A. A. Akbar, T. Ogawa, and C. Oshima, Surf. Rev. Lett. 9 (2002) 1459. DOI: https://doi.org/10.1142/S0218625X02003883

T. Martins, R. d. Miwa, A.J. Da Silva, and A. Fazzio, Phys. Rev. Let. 98 (2007) 196803. DOI: https://doi.org/10.1103/PhysRevLett.98.196803

A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, and S. Roche, Phys. Rev. Let. 101 (2008) 036808. DOI: https://doi.org/10.1103/PhysRevLett.101.036808

X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai, Science 324 (2009) 768. DOI: https://doi.org/10.1126/science.1170335

R. Kaner, J. Kouvetakis, C. Warble, M. Sattler, and N. Bartlett, Mater. Res. Bull. 22 (1987) 399. DOI: https://doi.org/10.1016/0025-5408(87)90058-4

A.Y. Liu, R.M. Wentzcovitch, and M.L. Cohen, Phys. Rev. B 39 (1989) 1760. DOI: https://doi.org/10.1103/PhysRevB.39.1760

Y. Miyamoto, A. Rubio, M.L. Cohen, and S.G. Louie, Phys. Rev. B 50 (1994) 4976. DOI: https://doi.org/10.1103/PhysRevB.50.4976

Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl,

and R. Gronsky, Phys. Rev. B 51 (1995) 11229. DOI: https://doi.org/10.1103/PhysRevB.51.11229

E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80 (1998) 4502. DOI: https://doi.org/10.1103/PhysRevLett.80.4502

D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, Carbon 38 (2000) 2017. DOI: https://doi.org/10.1016/S0008-6223(00)00058-0

D. Golberg, Y. Bando, P. Dorozhkin, and Z.-C. Dong, Mater. Res. Bull. 29 (2004) 38. DOI: https://doi.org/10.1557/mrs2004.15

M. Bokdam, P.A. Khomyakov, G. Brocks, Z. Zhong, and P.J. Kelly, Nano Lett. 11 (2011) 4631. DOI: https://doi.org/10.1021/nl202131q

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, and K.L.

Shepard, Nat. Nanotechnol. 5 (2010) 722. DOI: https://doi.org/10.1038/nnano.2010.172

M. Son, H. Lim, M. Hong, and H.C. Choi, Nanoscale 3 (2011) 3089. DOI: https://doi.org/10.1039/c1nr10504c

S. Tang, G. Ding, X. Xie, J. Chen, C. Wang, X. Ding, F. Huang, W. Lu, and M. Jiang, Carbon 50 (2012) 329. DOI: https://doi.org/10.1016/j.carbon.2011.07.062

S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, and X. Xie, Sci. Rep. 3 (2013) 2666. DOI: https://doi.org/10.1038/srep02666

W. Yang, G. Chen, Z. Shi, C. C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, and D. Shi, Nat. Mater. 12

(2013) 792.

S. Tang, H.Wang, H.S.Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, and F. Huang, Nat. Commun.

(2015) 6499.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus,

and T. Palacios, Nano Lett. 12 (2011) 161. DOI: https://doi.org/10.1002/asl.344

L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.P. Ma, Z. Zhang, Q. Fu, and L.M. Peng, Nat. Commun. 3

(2012) 699.

G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, and H. S. Shin, Nano Lett. 13 (2013) 1834. DOI: https://doi.org/10.1021/nl400559s

H. Arjmandi-Tash, D. Kalita, Z. Han, R. Othmen, G. Nayak, C. Berne, J. Landers, K. Watanabe, T. Taniguchi,

and L. Marty, J.Phys. Materials. 1 (2018) 015003. DOI: https://doi.org/10.1088/2515-7639/aac66e

M. Kawaguchi, T. Kawashima, and T. Nakajima, Chem. Mater. 8 (1996) 1197. DOI: https://doi.org/10.1021/cm950471y

L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, and L. Balicas, Nat. Mater. 9

(2010) 430.

F. H. Stillinger and T.A. Weber, Phys. Rev. B 31 (1985) 5262. DOI: https://doi.org/10.1103/PhysRevB.31.5262

M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B 56 (1997) 8542. DOI: https://doi.org/10.1103/PhysRevB.56.8542

J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip, Phys. Rev. B 58 (1998) 2539. DOI: https://doi.org/10.1103/PhysRevB.58.2539

N. Marks, Phys. Rev. B 63 (2000) 035401. DOI: https://doi.org/10.1103/PhysRevB.63.035401

M. Finnis and J. Sinclair, Philos. Mag. A 50 (1984) 45. DOI: https://doi.org/10.1080/01418618408244210

M. Baskes, Phys. Rev. Let. 59 (1987) 2666. DOI: https://doi.org/10.1103/PhysRevLett.59.2666

D. Pettifor, Phys. Rev. Let. 63 (1989) 2480. DOI: https://doi.org/10.1103/PhysRevLett.63.2480

D. Pettifor and I. Oleinik, Phys. Rev. B 59 (1999) 8487. DOI: https://doi.org/10.1103/PhysRevB.59.8487

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Mat.

(2002) 783.

A. C. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105 (2001) 9396. DOI: https://doi.org/10.1021/jp004368u

A. C. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W.A. Goddard, J. Phys. Chem. A 107 (2003) DOI: https://doi.org/10.1021/jp0276303

K. Chenoweth, A.C. Van Duin, and W.A. Goddard, J. Phys. Chem. A 112 (2008) 1040. DOI: https://doi.org/10.1021/jp709896w

J. Tersoff, Phys. Rev. B 37 (1988) 6991. DOI: https://doi.org/10.1103/PhysRevB.37.6991

J. Tersoff, Phys. Rev. B 39 (1989) 5566. DOI: https://doi.org/10.1103/PhysRevB.39.5566

J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Mat. 15 (2003) 5649. DOI: https://doi.org/10.1088/0953-8984/15/32/324

D. W. Brenner, Phys. Rev. B 42 (1990) 9458. DOI: https://doi.org/10.1103/PhysRevB.42.9458

N. Yu and A. A. Polycarpou, J. Colloid Interface Sci. 278 (2004) 428. DOI: https://doi.org/10.1016/j.jcis.2004.06.029

J.W. Kang and H.J. Hwang, J. Phys.: Condens. Mat. 16 (2004) 3901. DOI: https://doi.org/10.1088/0953-8984/16/23/010

S. Plimpton, J. Comput. Phys. 117 (1995) 1. DOI: https://doi.org/10.1006/jcph.1995.1039

V. V. Hoang, L. T. Cam Tuyen, and T. Q. Dong, Philos. Mag. 96 (2016) 1993. DOI: https://doi.org/10.1080/14786435.2016.1185183

S. Gleiman, C.-K. Chen, A. Datye, and J. Phillips, J. Mater. Sci. 37 (2002) 3429. DOI: https://doi.org/10.1023/A:1016502804363

W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

P. Bak, Rep. Prog. Phys. 45 (1982) 587. DOI: https://doi.org/10.1088/0034-4885/45/6/001

A. Savvatimskiy, Carbon 43 (2005) 1115. DOI: https://doi.org/10.1016/j.carbon.2004.12.027

Hang T. T. Nguyen, Carbon Lett. 29 (2019) 521. DOI: https://doi.org/10.1007/s42823-019-00056-6

Downloads

Published

26-05-2020

How to Cite

[1]
H. T. T. Nguyen, “Size and Layer Dependence of Hybrid Graphene/h-BN Models Upon Heating”, Comm. Phys., vol. 30, no. 2, p. 111, May 2020.

Issue

Section

Papers
Received 12-07-2019
Accepted 17-03-2020
Published 26-05-2020