Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon

Authors

  • Hang Thi Thuy Nguyen HCMC University Of Technology, 268 Ly Thuong Kiet Street, ward 14, District 10, Hochiminh City, Vietnam https://orcid.org/0000-0002-6459-2389

DOI:

https://doi.org/10.15625/0868-3166/15874

Keywords:

Zigzag SiCNR, Melting range, Structural evolution, Melting point, Molecular dynamic simulation,

Abstract

The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.

Downloads

Download data is not yet available.

References

Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa, A new type of high efficiency with a low‐cost solar cell having the structure of a μ c‐SiC/polycrystalline silicon heterojunction, J. Appl. Phys., 67 (1990) 6538. https://doi.org/10.1063/1.345131 DOI: https://doi.org/10.1063/1.345131

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, and AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197. https://doi.org/10.1038/nature04233 DOI: https://doi.org/10.1038/nature04233

Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Let., 96 (2006) 136806. https://doi.org/10.1103/PhysRevLett.96.136806 DOI: https://doi.org/10.1103/PhysRevLett.96.136806

P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, and A. Geim, Making graphene visible, Applied physics letters, 91 (2007) 063124. https://doi.org/10.1063/1.2768624 DOI: https://doi.org/10.1063/1.2768624

I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3 (2008) 654. https://doi.org/10.1038/nnano.2008.268 DOI: https://doi.org/10.1038/nnano.2008.268

W.L. Wang, S. Meng, and E. Kaxiras, Graphene nanoflakes with large spin, Nano Lett., 8 (2008) 241. https://doi.org/10.1021/nl072548a DOI: https://doi.org/10.1021/nl072548a

D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, and E. Whiteway, Experimental review of graphene, International Scholarly Research Notices, 2012 (2012). https://doi.org/10.5402/2012/501686 DOI: https://doi.org/10.5402/2012/501686

D.-Q. Fang, S.-L. Zhang, and H. Xu, Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping, Rsc Advances, 3 (2013) 24075. https://doi.org/10.1039/C3RA42720J DOI: https://doi.org/10.1039/c3ra42720j

L. Matthes and F. Bechstedt, Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations, Phys. Rev. B, 90 (2014) 165431. https://doi.org/10.1103/PhysRevB.90.165431 DOI: https://doi.org/10.1103/PhysRevB.90.165431

Y. Du, H. Liu, B. Xu, L. Sheng, J. Yin, C.-G. Duan, and X. Wan, Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band, Scientific reports, 5 (2015) 1. https://doi.org/10.1038/srep08921 DOI: https://doi.org/10.1038/srep08921

T.-C. Wang, C.-H. Hsu, Z.-Q. Huang, F.-C. Chuang, W.-S. Su, and G.-Y. Guo, Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons, Scientific reports, 6 (2016) 1. https://doi.org/10.1038/srep39083 DOI: https://doi.org/10.1038/srep39083

E.G. Marin, D. Marian, G. Iannaccone, and G. Fiori, First principles investigation of tunnel FETs based on nanoribbons from topological two-dimensional materials, Nanoscale, 9 (2017) 19390. https://doi.org/10.1039/C7NR06015G DOI: https://doi.org/10.1039/C7NR06015G

M. Monshi, S. Aghaei, and I. Calizo, Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties, RSC advances, 7 (2017) 18900. https://doi.org/10.1039/C6RA25083A DOI: https://doi.org/10.1039/C6RA25083A

C. Chen, B. Huang, and J. Wu, Be3N2 monolayer: A graphene-like two-dimensional material and its derivative nanoribbons, AIP Advances, 8 (2018) 105105. https://doi.org/10.1063/1.5044607 DOI: https://doi.org/10.1063/1.5044607

E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures, Phys. Rev. B, 81 (2010) 075433. https://doi.org/10.1103/PhysRevB.81.075433 DOI: https://doi.org/10.1103/PhysRevB.81.075433

S. Lin, Light-emitting two-dimensional ultrathin silicon carbide, J. Phys. Chem. C, 116 (2012) 3951. https://doi.org/10.1021/jp210536m DOI: https://doi.org/10.1021/jp210536m

Z. Shi, Z. Zhang, A. Kutana, and B.I. Yakobson, Predicting two-dimensional silicon carbide monolayers, ACS nano, 9 (2015) 9802. https://doi.org/10.1021/acsnano.5b02753 DOI: https://doi.org/10.1021/acsnano.5b02753

T. Susi, V. Skákalová, A. Mittelberger, P. Kotrusz, M. Hulman, T.J. Pennycook, C. Mangler, J. Kotakoski, and J.C. Meyer, Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide, Scientific reports, 7 (2017) 1. https://doi.org/10.1038/s41598-017-04683-9 DOI: https://doi.org/10.1038/s41598-017-04683-9

H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, and C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 375 (1995) 769. https://doi.org/10.1038/375769a0 DOI: https://doi.org/10.1038/375769a0

G. Meng, L. Zhang, C. Mo, S. Zhang, Y. Qin, S. Feng, and H. Li, Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers, Journal of materials research, 13 (1998) 2533. https://doi.org/10.1557/JMR.1998.0353 DOI: https://doi.org/10.1557/JMR.1998.0353

S. Deng, Z. Wu, J. Zhou, N. Xu, J. Chen, and J. Chen, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Chemical Physics Letters, 356 (2002) 511. https://doi.org/10.1016/S0009-2614(02)00403-7 DOI: https://doi.org/10.1016/S0009-2614(02)00403-7

W. Shi, Y. Zheng, H. Peng, N. Wang, C.S. Lee, and S.T. Lee, Laser ablation synthesis and optical characterization of silicon carbide nanowires, Journal of the American Ceramic Society, 83 (2000) 3228. https://doi.org/10.1111/j.1151-2916.2000.tb01714.x DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01714.x

J. Wei, K.-Z. Li, H.-J. Li, Q.-G. Fu, and L. Zhang, Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant, Materials chemistry and Physics, 95 (2006) 140. https://doi.org/10.1016/j.matchemphys.2005.05.032 DOI: https://doi.org/10.1016/j.matchemphys.2005.05.032

H. Zhang, W. Ding, K. He, and M. Li, Synthesis and characterization of crystalline silicon carbide nanoribbons, Nanoscale research letters, 5 (2010) 1264. https://doi.org/10.1007/s11671-010-9635-9 DOI: https://doi.org/10.1007/s11671-010-9635-9

L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, and J. Hou, Electronic structures of SiC nanoribbons, The Journal of chemical physics, 129 (2008) 174114. https://doi.org/10.1063/1.3006431 DOI: https://doi.org/10.1063/1.3006431

A. Lopez-Bezanilla, J. Huang, P.R. Kent, and B.G. Sumpter, Tuning from half-metallic to semiconducting behavior in sic nanoribbons, J. Phys. Chem. C, 117 (2013) 15447. https://doi.org/10.1021/jp406547a DOI: https://doi.org/10.1021/jp406547a

D.-T. Nguyen and M.-Q. Le, Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study, Superlattices and Microstructures, 98 (2016) 102. https://doi.org/10.1016/j.spmi.2016.08.003 DOI: https://doi.org/10.1016/j.spmi.2016.08.003

C. Costa and J. Morbec, Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation, J. Phys.: Condens. Mat., 23 (2011) 205504. https://doi.org/10.1088/0953-8984/23/20/205504 DOI: https://doi.org/10.1088/0953-8984/23/20/205504

M.S. Islam, A.J. Islam, O. Mahamud, A. Saha, N. Ferdous, J. Park, and A. Hashimoto, Molecular dynamics study of thermal transport in single-layer silicon carbide nanoribbons, AIP Advances, 10 (2020) 015117. https://doi.org/10.1063/1.5131296 DOI: https://doi.org/10.1063/1.5131296

J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39 (1989) 5566. https://doi.org/10.1103/PhysRevB.39.5566 DOI: https://doi.org/10.1103/PhysRevB.39.5566

E. Pearson, T. Takai, T. Halicioglu, and W.A. Tiller, Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor, Journal of Crystal Growth, 70 (1984) 33. https://doi.org/10.1016/0022-0248(84)90244-6 DOI: https://doi.org/10.1016/0022-0248(84)90244-6

M.I. Baskes, Determination of modified embedded atom method parameters for nickel, Materials Chemistry and Physics, 50 (1997) 152. https://doi.org/10.1016/S0254-0584(97)80252-0 DOI: https://doi.org/10.1016/S0254-0584(97)80252-0

P. Vashishta, R.K. Kalia, A. Nakano, and J.P. Rino, Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide, J. Appl. Phys., 101 (2007) 103515. https://doi.org/10.1063/1.2724570 DOI: https://doi.org/10.1063/1.2724570

S.J. Plimpton and A.P. Thompson, Computational aspects of many-body potentials, MRS bulletin, 37 (2012) 513. https://doi.org/10.1557/mrs.2012.96 DOI: https://doi.org/10.1557/mrs.2012.96

V.V. Hoang, L.T. Cam Tuyen, and T.Q. Dong, Stages of melting of graphene model in two-dimensional space, Philosophical Magazine, 96 (2016) 1993. http://dx.doi.org/10.1080/14786435.2016.1185183 DOI: https://doi.org/10.1080/14786435.2016.1185183

T.M. Le Nguyen, V. Van Hoang, and H.T. Nguyen, Structural evolution of free-standing 2D silicon carbide upon heating, The European Physical Journal D, 74 (2020) 1. https://doi.org/10.1140/epjd/e2020-10101-1 DOI: https://doi.org/10.1140/epjd/e2020-10101-1

J.L. Finney, Bernal’s road to random packing and the structure of liquids, Philosophical Magazine, 93 (2013) 3940. https://doi.org/10.1080/14786435.2013.770179 DOI: https://doi.org/10.1080/14786435.2013.770179

S. Le Roux and P. Jund, Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems, Computational Materials Science, 49 (2010) 70. https://doi.org/10.1016/j.commatsci.2010.04.023 DOI: https://doi.org/10.1016/j.commatsci.2010.04.023

Published

30-09-2021

How to Cite

Nguyen, H. T. T. (2021). Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon. Communications in Physics, 32(1). https://doi.org/10.15625/0868-3166/15874

Issue

Section

Papers