Vol. 32 No. 1 (2022)

Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon

Hang Thi Thuy Nguyen
\(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;
\(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

Published 15-09-2021


  • Zigzag SiCNR,
  • Melting range,
  • Structural evolution,
  • Melting point,
  • Molecular dynamic simulation,
  • ...More

How to Cite

Nguyen, H. T. T. (2021). Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon. Communications in Physics, 32(1), 55. https://doi.org/10.15625/0868-3166/15874


The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.


Download data is not yet available.


Metrics Loading ...


  1. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa, A new type of high efficiency with a low‐cost solar cell having the structure of a μ c‐SiC/polycrystalline silicon heterojunction, J. Appl. Phys., 67 (1990) 6538. DOI: https://doi.org/10.1063/1.345131
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, and AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233
  3. Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Let., 96 (2006) 136806. DOI: https://doi.org/10.1103/PhysRevLett.96.136806
  4. P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, and A. Geim, Making graphene visible, Applied physics letters, 91 (2007) 063124. DOI: https://doi.org/10.1063/1.2768624
  5. I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3 (2008) 654. DOI: https://doi.org/10.1038/nnano.2008.268
  6. W.L. Wang, S. Meng, and E. Kaxiras, Graphene nanoflakes with large spin, Nano Lett., 8 (2008) 241. DOI: https://doi.org/10.1021/nl072548a
  7. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, and E. Whiteway, Experimental review of graphene, International Scholarly Research Notices, 2012 (2012). DOI: https://doi.org/10.5402/2012/501686
  8. D.-Q. Fang, S.-L. Zhang, and H. Xu, Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping, Rsc Advances, 3 (2013) 24075. DOI: https://doi.org/10.1039/c3ra42720j
  9. L. Matthes and F. Bechstedt, Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations, Phys. Rev. B, 90 (2014) 165431. DOI: https://doi.org/10.1103/PhysRevB.90.165431
  10. Y. Du, H. Liu, B. Xu, L. Sheng, J. Yin, C.-G. Duan, and X. Wan, Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band, Scientific reports, 5 (2015) 1. DOI: https://doi.org/10.1038/srep08921
  11. T.-C. Wang, C.-H. Hsu, Z.-Q. Huang, F.-C. Chuang, W.-S. Su, and G.-Y. Guo, Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons, Scientific reports, 6 (2016) 1. DOI: https://doi.org/10.1038/srep39083
  12. E.G. Marin, D. Marian, G. Iannaccone, and G. Fiori, First principles investigation of tunnel FETs based on nanoribbons from topological two-dimensional materials, Nanoscale, 9 (2017) 19390. DOI: https://doi.org/10.1039/C7NR06015G
  13. M. Monshi, S. Aghaei, and I. Calizo, Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties, RSC advances, 7 (2017) 18900. DOI: https://doi.org/10.1039/C6RA25083A
  14. C. Chen, B. Huang, and J. Wu, Be3N2 monolayer: A graphene-like two-dimensional material and its derivative nanoribbons, AIP Advances, 8 (2018) 105105. DOI: https://doi.org/10.1063/1.5044607
  15. E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures, Phys. Rev. B, 81 (2010) 075433. DOI: https://doi.org/10.1103/PhysRevB.81.075433
  16. S. Lin, Light-emitting two-dimensional ultrathin silicon carbide, J. Phys. Chem. C, 116 (2012) 3951. DOI: https://doi.org/10.1021/jp210536m
  17. Z. Shi, Z. Zhang, A. Kutana, and B.I. Yakobson, Predicting two-dimensional silicon carbide monolayers, ACS nano, 9 (2015) 9802. DOI: https://doi.org/10.1021/acsnano.5b02753
  18. T. Susi, V. Skákalová, A. Mittelberger, P. Kotrusz, M. Hulman, T.J. Pennycook, C. Mangler, J. Kotakoski, and J.C. Meyer, Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide, Scientific reports, 7 (2017) 1. DOI: https://doi.org/10.1038/s41598-017-04683-9
  19. H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, and C.M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 375 (1995) 769. DOI: https://doi.org/10.1038/375769a0
  20. G. Meng, L. Zhang, C. Mo, S. Zhang, Y. Qin, S. Feng, and H. Li, Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers, Journal of materials research, 13 (1998) 2533. DOI: https://doi.org/10.1557/JMR.1998.0353
  21. S. Deng, Z. Wu, J. Zhou, N. Xu, J. Chen, and J. Chen, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Chemical Physics Letters, 356 (2002) 511. DOI: https://doi.org/10.1016/S0009-2614(02)00403-7
  22. W. Shi, Y. Zheng, H. Peng, N. Wang, C.S. Lee, and S.T. Lee, Laser ablation synthesis and optical characterization of silicon carbide nanowires, Journal of the American Ceramic Society, 83 (2000) 3228. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01714.x
  23. J. Wei, K.-Z. Li, H.-J. Li, Q.-G. Fu, and L. Zhang, Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant, Materials chemistry and Physics, 95 (2006) 140. DOI: https://doi.org/10.1016/j.matchemphys.2005.05.032
  24. H. Zhang, W. Ding, K. He, and M. Li, Synthesis and characterization of crystalline silicon carbide nanoribbons, Nanoscale research letters, 5 (2010) 1264. DOI: https://doi.org/10.1007/s11671-010-9635-9
  25. L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, and J. Hou, Electronic structures of SiC nanoribbons, The Journal of chemical physics, 129 (2008) 174114. DOI: https://doi.org/10.1063/1.3006431
  26. A. Lopez-Bezanilla, J. Huang, P.R. Kent, and B.G. Sumpter, Tuning from half-metallic to semiconducting behavior in sic nanoribbons, J. Phys. Chem. C, 117 (2013) 15447. DOI: https://doi.org/10.1021/jp406547a
  27. D.-T. Nguyen and M.-Q. Le, Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study, Superlattices and Microstructures, 98 (2016) 102. DOI: https://doi.org/10.1016/j.spmi.2016.08.003
  28. C. Costa and J. Morbec, Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation, J. Phys.: Condens. Mat., 23 (2011) 205504. DOI: https://doi.org/10.1088/0953-8984/23/20/205504
  29. M.S. Islam, A.J. Islam, O. Mahamud, A. Saha, N. Ferdous, J. Park, and A. Hashimoto, Molecular dynamics study of thermal transport in single-layer silicon carbide nanoribbons, AIP Advances, 10 (2020) 015117. DOI: https://doi.org/10.1063/1.5131296
  30. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39 (1989) 5566. DOI: https://doi.org/10.1103/PhysRevB.39.5566
  31. E. Pearson, T. Takai, T. Halicioglu, and W.A. Tiller, Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor, Journal of Crystal Growth, 70 (1984) 33. DOI: https://doi.org/10.1016/0022-0248(84)90244-6
  32. M.I. Baskes, Determination of modified embedded atom method parameters for nickel, Materials Chemistry and Physics, 50 (1997) 152. DOI: https://doi.org/10.1016/S0254-0584(97)80252-0
  33. P. Vashishta, R.K. Kalia, A. Nakano, and J.P. Rino, Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide, J. Appl. Phys., 101 (2007) 103515. DOI: https://doi.org/10.1063/1.2724570
  34. S.J. Plimpton and A.P. Thompson, Computational aspects of many-body potentials, MRS bulletin, 37 (2012) 513. DOI: https://doi.org/10.1557/mrs.2012.96
  35. V.V. Hoang, L.T. Cam Tuyen, and T.Q. Dong, Stages of melting of graphene model in two-dimensional space, Philosophical Magazine, 96 (2016) 1993. DOI: https://doi.org/10.1080/14786435.2016.1185183
  36. T.M. Le Nguyen, V. Van Hoang, and H.T. Nguyen, Structural evolution of free-standing 2D silicon carbide upon heating, The European Physical Journal D, 74 (2020) 1. DOI: https://doi.org/10.1140/epjd/e2020-10101-1
  37. J.L. Finney, Bernal’s road to random packing and the structure of liquids, Philosophical Magazine, 93 (2013) 3940. DOI: https://doi.org/10.1080/14786435.2013.770179
  38. S. Le Roux and P. Jund, Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems, Computational Materials Science, 49 (2010) 70. DOI: https://doi.org/10.1016/j.commatsci.2010.04.023