A Rectangle-quartet Metamaterial for Dual-band Perfect Absorption in the Visible Region

Nguyen Van Ngoc, Nguyen Thi Hien, Duong Thi Ha, Bui Son Tung, Bui Xuan Son Hai, Vu Dinh Lam, Bui Xuan Khuyen
Author affiliations


  • Nguyen Van Ngoc Graduate University of Science and Technology, Vietnam Academy of Science and Technology
  • Nguyen Thi Hien Faculty of Physics and Technology, TNU- University of Sciences
  • Duong Thi Ha Department of Physics, Thai Nguyen University of Education
  • Bui Son Tung Institute of Materials Science, Vietnam Academy of Science and Technology
  • Bui Xuan Son Hai Graduate University of Science and Technology, Vietnam Academy of Science and Technology
  • Vu Dinh Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology
  • Bui Xuan Khuyen Institute of Materials Science, Vietnam Academy of Science and Technology




metamaterials, perfect absorption, dual-band, visible region


Based on rectangle-shaped structures, we create a dual-band metamaterial perfect absorber (DMPA) in the optical region. The independent-polarization absorption is a significant advantage as well as the simple integrated progress for constituent materials. In particular, absorption can be obtained to be over 90% in a bandwidth of 140 THz (from 608 THz to 748 THz), which is still remained well in the oblique incident angles for the TE-polarization. Our results can be regarded as the groundwork for the near future applications such as photodetectors, energy converters and more.


Download data is not yet available.


Metrics Loading ...


N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100 (2008) 207402. DOI: https://doi.org/10.1103/PhysRevLett.100.207402

Y. Liu and X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc. Rev. 40 (2011) 2494. DOI: https://doi.org/10.1039/c0cs00184h

N. I. Zheludev and Y. S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11 (2012) 917. DOI: https://doi.org/10.1038/nmat3431

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst and W. J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107 (2011) 045901. DOI: https://doi.org/10.1103/PhysRevLett.107.045901

C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih and D. P. Tsai, T-shaped plasmonic array as a narrow-band thermal emitter or biosensor, Opt. Express 17 (2009) 13526. DOI: https://doi.org/10.1364/OE.17.013526

J. J. Lai, H. F. Liang, Z. L. Peng, X. Yi and X. F. Zhai, MEMS integrated narrow band infrared emitter and detector for infrared gas sensor, Journal of Physics: Conference Series 276 (2011) 012129. DOI: https://doi.org/10.1088/1742-6596/276/1/012129

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang et al., Monolayer graphene sensing enabled by the strong fano-resonant metasurface, Nanoscale 8 (2016) 17278. DOI: https://doi.org/10.1039/C6NR01911K

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich and D. M. Mittleman, A spatial light modulator for terahertz beams, Applied Physics Letters 94 (2009) 213511 [https://doi.org/10.1063/1.3147221]. DOI: https://doi.org/10.1063/1.3147221 https://doi.org/10.1063/1.3147221].">

T. V. Nguyen, L. T. Pham, B. X. Khuyen, D. C. Duong, L. H. T. Nghiem, N. T. Nguyen et al., Effects of metallic underlayer on SERS performance of a metal film over nanosphere metasurface, Journal of Physics D: Applied Physics 55 (2021) 025101. DOI: https://doi.org/10.1088/1361-6463/ac292d

Y. Zhong, L. Du, Q. Liu, L. Zhu and B. Zhang, Metasurface-enhanced atr sensor for aqueous solution in the terahertz range, Opt. Commun. 465 (2020) 125508. DOI: https://doi.org/10.1016/j.optcom.2020.125508

H.-F. Zhang, H.-B. Liu, C.-X. Hu and Z.-L. Wang, A metamaterial absorber operating in the visible light band based on a cascade structure, Plasmonics 15 (2020) 1755. DOI: https://doi.org/10.1007/s11468-020-01190-y

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan et al., Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals, Appl. Phys. Lett. 110 (2017) 101101. DOI: https://doi.org/10.1063/1.4977860

B.-X. Wang, X. Zhai, G.-Z. Wang, W.-Q. Huang and L.-L. Wang, Frequency tunable metamaterial absorber at deep-subwavelength scale, Opt. Mater. Express 5 (2015) 227. DOI: https://doi.org/10.1364/OME.5.000227

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad et al., Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers, Appl.Phys. Lett. 101 (2012) 101102. DOI: https://doi.org/10.1063/1.4749823

W. Li, X. Zhou, Y. Ying, X. Qiao, F. Qin, Q. Li et al., Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array, AIP Adv. 5 (2015) 067151. DOI: https://doi.org/10.1063/1.4923194

Y. Bai, L. Zhao, D. Ju, Y. Jiang and L. Liu, Wide-angle, polarization-independent and dual-band infrared perfect absorber based on l-shaped metamaterial, Opt. Express 23 (2015) 8670. DOI: https://doi.org/10.1364/OE.23.008670

L. Huang and H.-T. Chen, A brief review on terahertz metamaterial perfect absorbers, Terahertz Sci. Technol. 6 (2013) 26.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong and C. Lee, Dual band complementary metamaterial absorber in near infrared region, Journal of Applied Physics 115 (2014) 193109. DOI: https://doi.org/10.1063/1.4878459

C. M. Watts, X. Liu and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced Materials 24 (2012) OP98 [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201200674]. DOI: https://doi.org/10.1002/adma.201200674 https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201200674].">

C.-Y. Tsai, S.-P. Lu, J.-W. Lin and P.-T. Lee, High sensitivity plasmonic index sensor using slablike gold nanoring arrays, Applied physics letters 98 (2011) 153108. DOI: https://doi.org/10.1063/1.3579536

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih and Y.-C. Chang, Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, Opt. Express 20 (2012) 10376. DOI: https://doi.org/10.1364/OE.20.010376

D. Viet, N. Hien, P. Tuong, N. Minh, P. Trang, L. Le et al., Perfect absorber metamaterials: Peak, multi-peak and broadband absorption, Optics Communications 322 (2014) 209. DOI: https://doi.org/10.1016/j.optcom.2014.02.037

S. Guddala, R. Kumar and S. A. Ramakrishna, Thermally induced nonlinear optical absorption in metamaterial perfect absorbers, Appl. Phys. Lett. 106 (2015) 111901 [https://doi.org/10.1063/1.4914451]. DOI: https://doi.org/10.1063/1.4914451 https://doi.org/10.1063/1.4914451].">

A. D. Khan, M. Amin, A. Ali, S. D. Khan and R. Khan, Multiple higher-order fano resonances in plasmonic hollow cylindrical nanodimer, Appl. Phys. A 120 (2015) 641. DOI: https://doi.org/10.1007/s00339-015-9232-y

Q. Wang, W. Han, P. Liu and L. Dong, Electrically tunable quasi-3-d mushroom plasmonic crystal, J. Lightwave Technol. 34 (2016) 2175. DOI: https://doi.org/10.1109/JLT.2016.2526634

P. Jahangiri, F. B. Zarrabi, M. Naser- Moghadasi, A. Saee Arezoomand and S. Heydari, Hollow plasmonic high q-factor absorber for bio-sensing in mid-infrared application, Optics Communications 394 (2017) 80. DOI: https://doi.org/10.1016/j.optcom.2017.03.016

J. Kaschke and M. Wegener, Optical and infrared helical metamaterials, Nanophotonics 5 (2016) 510. DOI: https://doi.org/10.1515/nanoph-2016-0005

G. M. Crouch, C. Oh, K. Fu and P. W. Bohn, Tunable optical metamaterial-based sensors enabled by closed bipolar electrochemistry, Analyst 144 (2019) 6240. DOI: https://doi.org/10.1039/C9AN01137D

L. N. Le, N. M. Thang, L. M. Thuy and N. T. Tung, Hybrid semiconductor–dielectric metamaterial modulation for switchable bi-directional thz absorbers, Optics Communications 383 (2017) 244. DOI: https://doi.org/10.1016/j.optcom.2016.09.014

D. T. Viet, N. V. Hieu, V. D. Lam and N. T. Tung, Isotropic metamaterial absorber using cut-wire-pair structures, Appl. Phys. Express 8 (2015) 032001. DOI: https://doi.org/10.7567/APEX.8.032001

J. Zhou, E. N. Economon, T. Koschny and C. M. Soukoulis, Unifying approach to left-handed material design, Opt. Lett. 31 (2006) 3620. DOI: https://doi.org/10.1364/OL.31.003620

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens and V. D. Lam, Broadband negative permeability by hybridized cut-wire pair metamaterials, Appl. Phys. Express 5 (2012) 112001. DOI: https://doi.org/10.1143/APEX.5.112001

N. T. Tung and T. Tanaka, Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications, Photonics Nanostructures: Fundam. Appl. 28 (2018) 100. DOI: https://doi.org/10.1016/j.photonics.2017.12.004

N. T. Hien, L. N. Le, P. T. Trang, B. S. Tung, N. D. Viet, P. T. Duyen et al., Characterizations of a thermo-tunable broadband fishnet metamaterial at thz frequencies, Comput. Mater. Sci. 103 (2015) 189. DOI: https://doi.org/10.1016/j.commatsci.2015.02.038

T. Q. H. Nguyen, T. K. T. Nguyen, T. N. Cao, H. Nguyen and L. G. Bach, Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for x-band applications, AIP Adv. 10 (2020) 035326. DOI: https://doi.org/10.1063/1.5143915

T. H. Nguyen, T. A. H. Nguyen, T. N. Dinh, X. K. Bui, S. T. Bui, X. C. Nguyen et al., Multiband metamaterial absorber in a ring structure base on high-order magnetic resonance, Comm. in Phys. 31 (2021) 199 DOI: https://doi.org/10.15625/0868-3166/15520




How to Cite

N. V. Ngoc, N. T. Hien, D. T. Ha, B. S. Tung, B. X. S. Hai, V. D. Lam and B. Xuan Khuyen, A Rectangle-quartet Metamaterial for Dual-band Perfect Absorption in the Visible Region, Comm. Phys. 32 (2022) 169. DOI: https://doi.org/10.15625/0868-3166/16788.



Received 10-12-2021
Accepted 03-02-2022
Published 27-03-2022

Most read articles by the same author(s)