Forthcoming

Expanding the absorption bandwidth with two-layer graphene metamaterials in gigahertz frequency range

Author affiliations

Authors

  • Ngo Nhu Viet Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam https://orcid.org/0009-0007-7789-0899
  • Vu Dinh Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam https://orcid.org/0000-0002-8067-1503
  • Bui Son Tung Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam https://orcid.org/0000-0003-3267-001X
  • Bui Xuan Khuyen Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam https://orcid.org/0000-0001-6106-3089
  • Pham Thanh Son Faculty of Electronics Engineering, Hanoi University of Industry, Hanoi 11900, Vietnam https://orcid.org/0000-0002-3608-5929
  • Nguyen Hai Anh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam https://orcid.org/0009-0007-0103-6055
  • Nguyen Phon Hai Air Defence-Air Force Academy, Kim Son, Son Tay, Ha Noi, Vietnam https://orcid.org/0009-0005-3088-2512
  • Do Khanh Tung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam https://orcid.org/0000-0001-5132-4935
  • Do Thuy Chi Thai Nguyen University of Education, Thai Nguyen 250000, Vietnam https://orcid.org/0000-0001-7823-1173

DOI:

https://doi.org/10.15625/0868-3166/21678

Keywords:

multilayer, metamaterial absorber, graphene conductive ink

Abstract

This work investigates the design and performance of a bilayer graphene metamaterial absorber operating in the GHz region. We initially analyzed a single-layer metamaterial absorber composed of a conductive ink graphene structure on a FR-4 dielectric substrate backed by a continuous copper sheet. Subsequently, a second graphene-FR4 layer of identical dimensions was added to create a bilayer structure. While the number of absorption peaks increased, they remained isolated, failing to achieve the desired broadband effect. To overcome this limitation, we explored graphene layers with varying surface resistances. Our findings demonstrate that the bilayer graphene metamaterial absorber achieves an absorption exceeding 90% with a remarkable bandwidth of 9.1 GHz, spanning frequencies from 6.21 GHz to 15.31 GHz. This significant bandwidth expansion is attributed to the synergistic interactions and contributions between the graphene and metal layers within the structure. To gain a deeper understanding of the underlying absorption mechanism, we investigated the surface current distribution, the impact of conductivity, and the individual contributions of each layer. Additionally, we examined the influences of both incident angle and polarization angle on the absorption performance of the proposed bilayer MA. These comprehensive analyses provide valuable insights into the mechanisms responsible for the enhanced absorption observed in multilayer metamaterial structures. Our work holds relevance and might be useful to develop electromagnetic wave shielding technologies and devices operating in the GHz frequency range.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] R. Giri and R. Payal, Negative-Index Metamaterials, Ch. 10, pp. 205–217. John Wiley & Sons,

Ltd, 2023. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781394167074.ch10.

https://doi.org/10.1002/9781394167074.ch10.

[2] P. Mukherjee, S. Banerjee, S. Pahadsingh, W. Bhowmik, B. Appasani and Y. Abdulkarim, Refractive index sensor

based on terahertz epsilon negative metamaterial absorber for cancerous cell detection, Journal of Optoelectronics

and Advanced Materials 25 (2023) 128.

[3] K.-X. Zhang,W.-P.Wu, J.-D. Shao, J. Sun, Q. Yan and J.-Y. Nie, Substrate-thickness dependence of negative-index

metamaterials at optical frequencies, Appl.Phys. Lett. 124 (2024) .

[4] N. T. Hien, N. X. Ca, B. X. Khuyen, T. Van Huynh, N. S. Khiem, N. T. Tung et al., Active control of the hybridization

effect of near-field coupled resonators in metamaterial for a tunable negative refractive index at terahertz

frequencies, J. Phys. Chem. Sol. 156 (2021) 110173.

[5] H. A. Nguyen, B. S. Tung, X. C. Nguyen, V. D. Lam, T. H. Nguyen and B. X. Khuyen, Tunable dynamic metamaterial

for negative refraction, J. Phys. Chem. Sol. 186 (2024) 111804.

[6] U. K. Mudhigollam and M. R. Mandava, An analytical study of wireless power transmission system with metamaterials,

Energy Harvest. Syst. 11 (2024) 20220135.

[7] M.Wang, J. Guo, Y. Shi, M.Wang, G. Song and R. Yin, A metamaterial-incorporated wireless power transmission

system for efficiency enhancement, Int. J. Circuit Theory Appl. 51 (2023) 3051.

[8] W. C. Harris and D. S. Ricketts, Maximum gain enhancement in wireless power transfer using anisotropic metamaterials,

Sci. Rep. 13 (2023) 7726.

[9] W. Adepoju, I. Bhattacharya, M. Sanyaolu, M. B. Enagi, E. N. Esfahani, T. Banik et al., Metaheuristic-based

optimization and prototype investigation of low frequency metamaterial for wireless power transfer application,

IEEE Access 11 (2023) 54577.

[10] K. V. Babu and G. N. J. Sree, Design and circuit analysis approach of graphene-based compact metamaterialabsorber

for terahertz range applications, Opt. Quantum Electron. 55 (2023) 769.

[11] B.-X.Wang, G. Duan, C. Xu, J. Jiang,W. Xu and F. Pi, Design of multiple-frequency-band terahertz metamaterial

absorbers with adjustable absorption peaks using toothed resonator, Mater. Des. 225 (2023) 111586.

[12] Y. Liu, W.-Z. Ma, Y.-C. Wu, D. Meng, C. Dou, Y.-Y. Cheng et al., A metamaterial absorber with a multi-layer

metal–dielectric grating structure from visible to near-infrared, Opt. Commun. 542 (2023) 129588.

[13] D. Pham-Van, C. Tran-Manh, N. Bui-Huu, A. Pham-Phuong, A. Ta-Minh-Tuan, D. Pham-Hoang et al., Broadband

microwave coding absorber using genetic algorithm, Opt. Mater. 147 (2024) 114679.

[14] T. K. T. Nguyen, T. M. Nguyen, H. Q. Nguyen, T. M. T. Nguyen, T. H. T. Ho, T. M. Pham et al., A simple design

of water-based broadband metamaterial absorber for thz applications, Comm. Phys. 33 (2023) 93.

[15] B. X. Khuyen, N. Van Ngoc, D. N. Dung, N. P. Hai, N. T. Tung, B. S. Tung et al., Dual-band infrared metamaterial

perfect absorber for narrow-band thermal emitters, Journal of Physics D: Applied Physics 57 (2024) 285501.

[16] G. Peng, P.-X. Ke, L.-C. Tseng, C.-F. Yang and H.-C. Chen, The design of a multilayer and planar metamaterial

with the multi-functions of a high-absorptivity and ultra-broadband absorber and a narrowband sensor, in

Photonics, vol. 10, p. 804, MDPI, 2023, DOI.[17] H.W. Lan, Z. M. Li, X. L. Weng, L. Qi, K. Li, Z. R. Zhou et al., Low-frequency broadband multilayer microwave

metamaterial absorber based on resistive frequency selective surfaces, Appl. Opt. 62 (2023) 1096.

[18] B. X. Khuyen, N. N. Viet, P. T. Son, B. H. Nguyen, N. H. Anh, D. T. Chi et al., Multi-layered metamaterial

absorber: Electromagnetic and thermal characterization, in Photonics, vol. 11, p. 219, MDPI, 2024, DOI.

[19] G. Ma, X. Li, F. Hu, T. Deng, L. Li, C. Gao et al., A novel multilayer broadband terahertz metamaterial absorber

based on three-dimensional printing and microfluidics technologies, IEEE Trans. Terahertz Sci. Technol. (2024) .

[20] P. Sun, H. Feng, L. Su, S. Nie, X. Li, Y. Zhou et al., Metamaterial ultra-wideband solar absorbers based on a

multi-layer structure with cross etching, Phys. Chem. Chem. Phys. 25 (2023) 10136.

[21] Y. Lian, Y. Li, Y. Lou, Z. Liu, C. Jiang, Z. Hu et al., Adjustable trifunctional mid-infrared metamaterial absorber

based on phase transition material vo2, Nanomaterials 13 (2023) 1829.

[22] D. T. Ha, M. H. Nam, B. S. Tung, B. X. Khuyen, V. D. Lam and Q. Le-Van, Ultra-broadband and flexible

metamaterial absorber based on mos2 cuboids with mie resonances, J. Korean Phys. Soc. 82 (2023) 1047.

[23] F. Cai and Z. Kou, A novel triple-band terahertz metamaterial absorber using a stacked structure of mos2 and

graphene, in Photonics, vol. 10, p. 643, MDPI, 2023, DOI.

[24] R. Zheng, Y. Liu, L. Ling, Z. Sheng, Z. Yi, Q. Song et al., Ultra wideband tunable terahertz metamaterial absorber

based on single-layer graphene strip, Diamond and Related Materials 141 (2024) 110713.

[25] A. Didari-Bader and H. Saghaei, Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers,

Opt. Express 31 (2023) 12653.

[26] A. Verma, N. Narang, D. Singh and G. Varma, An experiment with electronic waste for improving the performance

of fsss embedded multilayer microwave absorber, J. Mater. Sci.: Mater. Electron. 34 (2023) 737.

[27] F. Ding, Y. Cui, X. Ge, Y. Jin and S. He, Ultra-broadband microwave metamaterial absorber, Appl. Phys. Lett.

100 (2012) .

[28] M. Ba˘gmancı, L.Wang, C. Sabah, M. Karaaslan, L. C. Paul, T. Rani et al., Broadband multi-layered stepped cone

shaped metamaterial absorber for energy harvesting and stealth applications, Eng. Rep. (2024) e12903.

[29] M. M. Hasan, M. Moniruzzaman, P. Kirawanich, T. Alam, I. B. Yahya, A. M. Alrashdi et al., Frequency and

bandwidth modulation of a wide band-stop metamaterial for emi shielding applications, Opt. Laser Technol. 172

(2024) 110515.

[30] L. Du, T. Shi, S. Dong, X. Wang, M. Zhou, J. Zhao et al., Ultra broadband microwave metamaterial absorber

with multiple strong absorption peaks induced by sandwiched water resonators, Appl. Phys. A 128 (2022) 864.

[31] Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim and Y. Lee, Dual broadband metamaterial absorber, Opt.

Express 23 (2015) 3861.

[32] G. Deng, H. Sun, K. Lv, J. Yang, Z. Yin, Y. Li et al., Enhanced broadband absorption with a twisted multilayer

metal–dielectric stacking metamaterial, Nanoscale Adv. 3 (2021) 4804.

[33] A. Armghan, K. Aliqab and M. Alsharari, Polarization and wide-angle incidence mxene-based metamaterial

absorber for visible and infrared wavelengths, Opt. Quantum Electron. 56 (2024) 1265.

[34] X. Huang, M. Cao, D. Wang, X. Li, J. Fan and X. Li, Broadband polarization-insensitive and oblique-incidence

terahertz metamaterial absorber with multi-layered graphene, Opt. Mater. Express 12 (2022) 811.

Published

25-12-2024

How to Cite

[1]
N. N. Viet, “Expanding the absorption bandwidth with two-layer graphene metamaterials in gigahertz frequency range”, Comm. Phys., vol. 34, no. 4, Dec. 2024.

Funding data

Received 07-10-2024
Accepted 12-12-2024
Published 25-12-2024

Most read articles by the same author(s)