Vol. 31 No. 2 (2021)
Papers

Excitation Function for the Production of \(^{96}\)Nb in the \(^{nat}\)Zr(\(p,x\)) Reaction

Nguyen Van Do
Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000, Vietnam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
Nguyen Thanh Luan
Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam and Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
Nguyen Thi Hien
Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam and Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
Guinyun Kim
Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea
Kim Tien Thanh
Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
Pham Duc Khue
Institute for Nuclear Science and Technology, VINATOM, 179 Hoang Quoc Viet, Hanoi, Vietnam
Bui Van Loat
Department of Nuclear Physics, Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi,Vietnam

Published 10-05-2021

Keywords

  • natZr(p,
  • x)96Nb reaction,
  • Excitation function,
  • Stacked-foil activation method,
  • γ-ray spectroscopy,
  • TALYS-1.95,
  • TENDL-2019 data library.
  • ...More
    Less

How to Cite

Do, N. V., Luan, N. T., Hien, N. T., Kim, G., Thanh, K. T., Khue, P. D., & Loat, B. V. (2021). Excitation Function for the Production of \(^{96}\)Nb in the \(^{nat}\)Zr(\(p,x\)) Reaction. Communications in Physics, 31(2), 179. https://doi.org/10.15625/0868-3166/15608

Abstract

We have measured the excitation function for the production of 96Nb in proton induced reaction on natural zirconium in the energy range of 10.58 MeV to 43.61 MeV. The measurement was performed using a stacked-foil activation method combined with off-line γ-ray spectrometry. The stack containing Zr samples, Cu monitors, and several energy degraders was irradiated at the MC-50 Cyclotron of the Korea Institute of Radiological and Medical Sciences (KIRAM), Korea. The cross section of the natZr(p,x)96Nb reaction was extracted from the measured activity of reaction product using an HPGe γ-ray detector. The energy of the proton beam along the stacked foil was calculated using the code SRIM-2013. The proton beam flux was determined via the natCu(p,x)62Zn and natCu(p,x)65Zn monitoring reactions. The measured cross sections of the natZr(p,x)96Nb reaction as a function of the proton energy are compared with the literature data as well as with the theoretical predictions using the TALYS-1.95 nuclear model code and the TENDL-2019 nuclear data library.

Downloads

Download data is not yet available.

References

  1. [1] I. Dillmann, L. Coquard, C. Domingo-Pardo, F. Kappeler, J. Marganiec, E. Uberseder, U. Giesen, A. Heiske, G.
  2. Feinberg, D. Hentschel, S. Hilpp, H. Leiste, T. Rauscher, F.-K. Thielemann, Phys. Rev. C 84 (2011) 015802.
  3. [2] H. Zaneb, M. Hussain, N. Amjed, S.M. Qaim, Appl. Radiat. Isot. 104 (2015) 232.
  4. [3] Syed M. Qaim, Ingo Spahn, Bernhard Scholten, and Bernd Neumaier, Radiochim. Acta 104 (2016) 601.
  5. [4] B.M. Ali, M. Al-Abyad, S. Kandil, A.H.M. Solieman, and F. Ditroi, Eur. Phys. J. Plus 133 (2018) 9.
  6. [5] N. V. Do, N. T. Luan, N. T. Hien, G. N. Kim, N. T. Xuan, K. T. Thanh, Eur. Phys. J. A 56 (2020) 194.
  7. [6] F. Szelecsenyi, G.F. Steyn, Z. Kovacs, C. Vermeulen, K. Nagatsu, M.-R. Zhang and K. Suzuki, Nucl. Instr. Meth.
  8. B 343 (2015) 173.
  9. [7] F. Tarkanyi, F. Ditroi, S. Takacs, A. Hermanne, M. Al-Abyad, H. Yamazaki, M. Bada and M.A. Mohammadi,
  10. Appl. Radiat. Isot. 97 (2015) 149.
  11. [8] M. Murakami, H. Haba, S. Goto, J. Kanaya and H. Kudo, Appl. Radiat. Isot. 90 (2014)149.
  12. [9] M. Al-Abyad, A.S. Abdel-Hamid, F. Tarkanyi, F. Ditroi, S. Takacs, U. Seddik and I. I. Bashter, Appl. Radiat.
  13. Isot. 70 (2012) 257.
  14. [10] M.S. Uddin, M.U. Khandaker, K.S. Kim, Y.S. Lee, M.W. Lee and G.N. Kim, Nucl. Instr. Meth. B 266 (208) 13.
  15. [11] R. Michel, R. Bodemann, H. Busemann, R. Daunke, M. Gloris, H.-J. Lange, B. Klug, A. Krins, I. Leya, M.
  16. Luepke, S. Neumann, H. Reinhardt, M. Schnatz-Buettgen, U. Herpers, Th. Schiekel, F. Sudbrock, B. Holmqvist,
  17. H. Conde, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Sinal and D. Filges, Nucl. Instr. Meth.
  18. B 129 (1997) 153.
  19. [12] N. V. Do, N. T. Luan, N. T. Xuan, N. T. Hien , G. N. Kim, K. S. Kim, J. Radioanal. Nucl. Chem. 321 (2019) 117.
  20. [13] M. U. Khandaker, A. K. M. M. H. Meaze, K. S. Kim, D. C. Son, G. N. Kim, J. Korean. Phys. Soc. 48 (2006)
  21. [14] J. F. Ziegler, SRIM-2003. Nucl. Instr. Meth. B 219–220 (2004) 1027.
  22. [15] J. F. Ziegler, J. P. Biersack, U. Littmark (2003) SRIM 2003 code, Version 96.xx. The Stopping and Range of Ions
  23. in Solids. Pergamon, New York, available from http://www.srim.org/.
  24. [16] S.M. Qaim, F. Tark ´ anyi, P. Oblo ´ zinsk ˇ y, K. Gul, A. Hermanne, M.G. Mustafa, F.M. Nortier, B. Scholten, Y. ´
  25. Shubin, S. Takacs, Y. Zhuang, IAEA-TECDOC-1211, Vienna (2001). Available from ´ http://wwwnds.iaea.
  26. org/medical/.
  27. [17] Nudat 2.8, National Nuclear Data Center, Brookhaven National Laboratory, available from http://www.nndc.
  28. bnl.gov/nudat2/.
  29. [18] A. Koning, S. Hilaire and S. Goriely, TALYS-1.95, a nuclear reaction program, NL-1755 ZG Petten the Netherlands (2019). Available from https://tendl.web.psi.ch/tendl 2019/talys.html.
  30. [19] Ozan Artun, Appl. Radiat. Isot. 144 (2019) 64.
  31. [20] TENDL-2019: TALYS-based evaluated nuclear data library (2019). Available from
  32. https://tendl.web.psi.ch/tendl 2019/tendl2019.html