Vol. 28 No. 4 (2018)
Papers

Raman Laser with a Singly Resonant Cavity: Theoretical Model and Experiment

Sergei Viktorovich Voitikov
B.I. Stepanov Institute of Physics
Ruslan Chulkov
B.I. Stepanov Institute of Physics
Vasyli Markevich
B.I. Stepanov Institute of Physics
Valentin Orlovich
B.I. Stepanov Institute of Physics
Do Quoc Khanh
Institute of Physics, Vietnam Academy of Science and Technology
Pham Hong Minh
Institute of Physics, Vietnam Academy of Science and Technology
Nguyen Xuan Tu
Institute of Physics, Vietnam Academy of Science and Technology

Published 27-12-2018

Keywords

  • stimulated Raman scattering,
  • solid-state laser,
  • external cavity Raman laser

How to Cite

Voitikov, S. V., Chulkov, R., Markevich, V., Orlovich, V., Khanh, D. Q., Minh, P. H., & Tu, N. X. (2018). Raman Laser with a Singly Resonant Cavity: Theoretical Model and Experiment. Communications in Physics, 28(4), 287. https://doi.org/10.15625/0868-3166/28/4/12940

Abstract

A semiclassical theoretical model of a Raman laser possessing a cavity which is resonant at the Stokes wavelength and not resonant at the pump wavelength has been developed. The wave equations describing evolution of amplitudes of the pump and Stokes pulses in the Raman cavity have been derived. Results of the theoretical modeling have been analyzed for conditions of an experiment with the Raman laser on barium nitrate crystal under the nanosecond pulse pump. Numerically calculated energy characteristics of the Raman laser as well as space-time dynamics of the Stokes generation have been demonstrated to be in reasonable agreement with the experiment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. V.A. Lisinetskii, Th. Riesbeck, H. Rhee, H.J. Eichler, V.A. Orlovich. Apl.Phys.B 99 (2010) 127
  2. P. Cerny, Helena Jeliınkova, P.G. Zverev, T.T. Basiev. Progress in Quantum Electronics 28 (2004) 113.
  3. A.A. Demidovich, P.A.Apanasevich, L.E. Batay, A.S. Grabtchikov, A.N. Kuzmin, V.A. Lisinetskii, V.A. Orlovich, O.V. Kuzmin, V.L.Hait, W.Kiefer, M.B.Danailov. JOSA B, 23 (2006) 1109.
  4. R.V. Chulkov, A.S. Grabtchikov, D.N. Busko, P.A. Apanasevich, N. A. Khilo, and V.A. Orlovich. JOSA B 23 (2006) 1109.
  5. E. Berike, B. Davidenko, V. Mihkelsoo, P.A. Apanasevich, A.S. Grabtchenko, V.F. Orlovich. Opt. Commun. 56 (1985) 283
  6. A.A. Demidovich, A.S. Grabtchikov, V.A. Lisinetskii, , V.N.Burakevich V.A. Orlovich, W.Kiefer. Optics Letters, 30 (2005) 1701.
  7. A.S. Grabtchikov, R.V. Chulkov, V.A. Orlovich, M. Schmitt, R. Maksimenko,
  8. W. Kiefer. Opt. Lett., 28 (2003) 926.
  9. S.V. Voitikov, A.A. Demidovich, P.V. Shpak, A.S. Grabtchikov, M.B. Danailov, and V.A. Orlovich. J. Opt. Soc. Am. B 27 (2010) 1232.
  10. H. Haken. Laser Light Dynamics, Elsevier Science Publishers B. V (1985)
  11. A.E. Siegman. Lasers, University Science Books, (1986)
  12. S.V. Voitikov, A. A. Demidovich, M.B. Danailov, and V. A. Orlovich. Journal of Physics B: At. Mol. Opt. Phys, 47 (2014) 105402
  13. A. Penzkofer, A.Laubereau, W.Kaiser. Progress in Quantum Electronics, 6 (1979) 55
  14. . P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, and V. N. Voitsekhovskii. Opt. Materials. 11 (1999) 315