Vol. 27 No. 4 (2017)
Papers

Facile Synthesis of Carbon Quantum Dots by Plasma-liquid Interaction Method

Do Hoang Tung
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Tran Thi Thuong
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Nguyen Dinh Cong
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Nguyen Thanh Liem
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Nguyen Van Kha
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Le Hong Manh
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Pham Hong Minh
Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Nguyen Thi Thu Thuy
University of Fire Fighting and Prevention, Hanoi, Vietnam
Nguyen Minh Hoa
Hue College of Medicine and Pharmacy, Hue, Vietnam
Nguyen Van Phu
Vinh University, Vinh City, Nghe An Province, Vietnam
CIPV27N4

Published 26-01-2018

Keywords

  • carbon quantum dot,
  • plasma nanosynthesis,
  • biomedical application

How to Cite

Tung, D. H., Thuong, T. T., Cong, N. D., Liem, N. T., Kha, N. V., Manh, L. H., Minh, P. H., Thuy, N. T. T., Hoa, N. M., & Phu, N. V. (2018). Facile Synthesis of Carbon Quantum Dots by Plasma-liquid Interaction Method. Communications in Physics, 27(4), 311. https://doi.org/10.15625/0868-3166/27/4/10867

Abstract

Carbon quantum dots (CQDs) are a novel type of fluorescent nano-materials with various unique properties. They are recently attracting enormous interest due to their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization as well as resistance to photo-bleaching and potential applications in biomedical indication, photo-catalysis, energy conversion, optoelectronics, and sensing. In this work, we present a facile and environmentally friendly synthesis of CQDs based on plasma - liquid interaction method. This is a single-step method and does not use toxic chemicals. The size distribution of obtained CQDs is rather uniform at approximately 3 nm. The emission peak of CQDs shifts from 427 nm to 523 nm as the excitation wavelength is varied from 340 nm to 460 nm. The non-equilibrium reactive chemistry of plasma liquid interaction is responsible for acceleration of the CQDs formation process.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. H. Li, Z. Kang, Y. Liu and S.-T. Lee, J. Mater. Chem. 22 (2012) 24230.
  2. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed. 49 (2010) 6726.
  3. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens, J. Am. Chem. Soc. 126 (2004)12736.
  4. D. Mariotti and R. M. Sankaran, J. Phys. D: Appl. Phys. 43 (2010) 323001.
  5. H. Peng and J. Travas-Sejdic, Chem. Mater. 21 (2009) 5563.
  6. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun. (2009) 5118.
  7. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon and M. Sharon, Mater. Sci. Engineer.: C 33 (2013) 2914.
  8. G. Oza, K. Oza, S. Pandey, S. Shinde, A. Mewada, M. Thakur, M. Sharon and M. Sharon, J. Fluoresc. 25 (2015) 9.
  9. B. De and N. Karak, RSC Adv. 3 (2013) 8286.
  10. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella and W. J. Parak, Chem. Soc. Rev. 37 (2008) 1896.
  11. H. Li, Y. Zhang, L. Wang, J. Tian and X. Sun, Chem. Commun. 47 (2011) 961.
  12. Q. Wang, H. Zheng, Y. Long, L. Zhang, M. Gao and W. Bai, Carbon 49 (2011) 3134.
  13. B. Chen, F. Li, S. Li,W.Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang, X. Hong, S. You, Y. Lin, K. Zeng and S. Chen, Nanoscale 5 (2013) 1967.
  14. F. Li, C. Liu, J. Yang, Z. Wang, W. Liu and F. Tian, RSC Adv. 4 (2014) 3201.
  15. X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi and N. Koshizaki, Chem. Commun. 47 (2010) 932.