Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/3/10653Keywords:
nonlinear optics, binary waveguide array, Dirac solitonAbstract
We investigate the edge effects of the optical analogue of the quantum relativistic Dirac solitons in binary waveguide arrays with Kerr nonlinearity when one tail of the Dirac soliton is truncated. We show that if the outermost waveguide of the binary waveguide array hosts the intense component of the truncated Dirac soliton, then Dirac soliton will be repeatedly bent towards the binary waveguide array edge. In the contrast, if the outermost waveguide of the binary waveguide array hosts the weak component of the truncated Dirac soliton, then Dirac soliton will be pushed away from the binary waveguide array edge. To the best of our knowledge, these unique features have not been found in any other systems.Downloads
Metrics
References
F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1. DOI: https://doi.org/10.1016/j.physrep.2008.04.004
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817. DOI: https://doi.org/10.1038/nature01936
T. Pertsch, P. Dannberg, W. Elflein, A. Brӓuer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752. DOI: https://doi.org/10.1103/PhysRevLett.83.4752
R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenb erg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 4756. DOI: https://doi.org/10.1103/PhysRevLett.83.4756
M. Ghulinyan, C.J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D.S. Wiersma, Phys. Rev. Lett. 94 (2005) 127401. DOI: https://doi.org/10.1103/PhysRevLett.94.127401
H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Brӓuer, and U. Peschel, Phys. Rev. Lett. 96 (2006) 023901. DOI: https://doi.org/10.1103/PhysRevLett.96.023901
Tr.X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903. DOI: https://doi.org/10.1103/PhysRevLett.110.113903
Tr.X. Tran and F. Biancalana, Opt. Exp. 21 (2013) 17539. DOI: https://doi.org/10.1364/OE.21.017539
Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 89 (2014) 013826. DOI: https://doi.org/10.1103/PhysRevA.89.013826
S. Longhi, Phys. Rev. B 81 (2010) 075102. DOI: https://doi.org/10.1103/PhysRevB.81.075102
F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, EPL 97 (2012) 10008. DOI: https://doi.org/10.1209/0295-5075/97/10008
S. Longhi, Opt. Lett. 35 (2010) 235. DOI: https://doi.org/10.1364/OL.35.000235
F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902. DOI: https://doi.org/10.1103/PhysRevLett.105.143902
S. Longhi, Appl. Phys. B 104 (2011) 453. DOI: https://doi.org/10.1007/s00340-011-4628-7
J.M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D.N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, Phys. Rev. Lett. 109 (2012) 023602. DOI: https://doi.org/10.1103/PhysRevLett.109.023602
Tr.X. Tran and F. Biancalana, Phys. Rev. A 96 (2017) 013831. DOI: https://doi.org/10.1103/PhysRevA.96.013831
R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398. DOI: https://doi.org/10.1103/PhysRevD.13.3398
R.B. Laughlin, “Nobel Lecture: Fractional quantization”, Rev. Mod. Phys. 71 (1999) 863. DOI: https://doi.org/10.1103/RevModPhys.71.863
M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010) 3045. DOI: https://doi.org/10.1103/RevModPhys.82.3045
X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83 (2011) 1057. DOI: https://doi.org/10.1103/RevModPhys.83.1057
M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature (London), 496 (2013) 196. DOI: https://doi.org/10.1038/nature12066
L. Lu, J.D. Joannopoulos, and M. Soljačic, Nat. Photonics 8 (2014) 821. DOI: https://doi.org/10.1038/nphoton.2014.248
A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 27 (2002) 2112. DOI: https://doi.org/10.1364/OL.27.002112
A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 28 (2003) 2345. DOI: https://doi.org/10.1364/OL.28.002345
M. Conforti, C. De Angelis, and T.R. Akylas, Phys. Rev. A 83 (2011) 043822. DOI: https://doi.org/10.1103/PhysRevA.83.043822
M. Johansson, K. Kirr, A.S. Kovalev, and L. Kroon, Physica Scripta 83 (2011) 065005. DOI: https://doi.org/10.1088/0031-8949/83/06/065005
A. Gorbach and M. Johansson, Eur. Phys. J. D 29 (2004) 77. DOI: https://doi.org/10.1140/epjd/e2004-00017-3
M. Johansson and A. Gorbach, Phys. Rev. E 70 (2004) 057604. DOI: https://doi.org/10.1103/PhysRevE.70.057604
R. Morandotti, D. Mandelik, Y. Silberberg, J.S. Aitchison, M. Sorel, D.N. Christodoulides, A.A. Sukhorukov, and Y.S. Kivshar, Opt. Lett. 29 (2004) 2890. DOI: https://doi.org/10.1364/OL.29.002890
Tr.X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340 (2014) 179. DOI: https://doi.org/10.1016/j.aop.2013.10.017
Y. Nogami, F.M. Toyama, and Z. Zhao, J. Phys. A: Math. Gen. 28 (1995) 1413. DOI: https://doi.org/10.1088/0305-4470/28/5/025
Tr.X. Tran, X.N. Nguyen, and D.C. Duong, J. Opt. Soc. Am. B 31 (2014) 1132. DOI: https://doi.org/10.1364/JOSAB.31.001132
Tr.X. Tran, X.N. Nguyen, and F. Biancalana, Phys. Rev. A 91 (2015) 023814. DOI: https://doi.org/10.1103/PhysRevA.91.023814
Tr.X. Tran and D.C. Duong, Ann. Phys. 361 (2015) 501. DOI: https://doi.org/10.1016/j.aop.2015.07.015
W. Heisenberg, Rev. Mod. Phys. 29 (1957) 269. DOI: https://doi.org/10.1103/RevModPhys.29.269
D.C. Ionescu, R. Reinhardt, B. Muller, and W. Greiner, Phys. Rev. A 38 (1988) 616. DOI: https://doi.org/10.1103/PhysRevA.38.616
A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421. DOI: https://doi.org/10.1023/A:1014293104217
M.J. Esteban and E. Séré, Discrete Contin. Dyn. Syst. 8 (2002) 381. DOI: https://doi.org/10.3934/dcds.2002.8.381
I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62. DOI: https://doi.org/10.1016/0003-4916(76)90057-9
N. Kemmer, Helv. Phys. Acta 10 (1937) 47.
E. Fermi and C.N. Yang, Phys. Rev. 76 (1949) 1739. DOI: https://doi.org/10.1103/PhysRev.76.1739
G.P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013). DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5
Y.S. Kivshar and G.P. Agrawal, Optical Solitons: from Fiber to Photonic Crystals, 5th ed. (Academic, 2003). DOI: https://doi.org/10.1016/B978-012410590-4/50012-7
R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 2726. DOI: https://doi.org/10.1103/PhysRevLett.83.2726
P.G. Kevrekidis and M.I. Weinstein, Math. Comput. Simul. 62 (2003) 65. DOI: https://doi.org/10.1016/S0378-4754(02)00185-4
G.P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 90 (2014) 023857. DOI: https://doi.org/10.1103/PhysRevA.90.023857
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 20-10-2017
Published 18-11-2017