Vol. 27 No. 3 (2017)
Papers

Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays

Tran Xuan Truong
Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
Nguyen Minh Hue
Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
Phung Dinh Hoat
Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam

Published 18-11-2017

Keywords

  • nonlinear optics,
  • binary waveguide array,
  • Dirac soliton

How to Cite

Truong, T. X., Hue, N. M., & Hoat, P. D. (2017). Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays. Communications in Physics, 27(3), 205. https://doi.org/10.15625/0868-3166/27/3/10653

Abstract

We investigate the edge effects of the optical analogue of the quantum relativistic Dirac solitons in binary waveguide arrays with Kerr nonlinearity when one tail of the Dirac soliton is truncated. We show that if the outermost waveguide of the binary waveguide array hosts the intense component of the truncated Dirac soliton, then Dirac soliton will be repeatedly bent towards the binary waveguide array edge. In the contrast, if the outermost waveguide of the binary waveguide array hosts the weak component of the truncated Dirac soliton, then Dirac soliton will be pushed away from the binary waveguide array edge. To the best of our knowledge, these unique features have not been found in any other systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1.
  2. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817.
  3. T. Pertsch, P. Dannberg, W. Elflein, A. Brӓuer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752.
  4. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenb erg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 4756.
  5. M. Ghulinyan, C.J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D.S. Wiersma, Phys. Rev. Lett. 94 (2005) 127401.
  6. H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Brӓuer, and U. Peschel, Phys. Rev. Lett. 96 (2006) 023901.
  7. Tr.X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903.
  8. Tr.X. Tran and F. Biancalana, Opt. Exp. 21 (2013) 17539.
  9. Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 89 (2014) 013826.
  10. S. Longhi, Phys. Rev. B 81 (2010) 075102.
  11. F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, EPL 97 (2012) 10008.
  12. S. Longhi, Opt. Lett. 35 (2010) 235.
  13. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902.
  14. S. Longhi, Appl. Phys. B 104 (2011) 453.
  15. J.M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D.N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, Phys. Rev. Lett. 109 (2012) 023602.
  16. Tr.X. Tran and F. Biancalana, Phys. Rev. A 96 (2017) 013831.
  17. R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398.
  18. R.B. Laughlin, “Nobel Lecture: Fractional quantization”, Rev. Mod. Phys. 71 (1999) 863.
  19. M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010) 3045.
  20. X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83 (2011) 1057.
  21. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature (London), 496 (2013) 196.
  22. L. Lu, J.D. Joannopoulos, and M. Soljačic, Nat. Photonics 8 (2014) 821.
  23. A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 27 (2002) 2112.
  24. A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 28 (2003) 2345.
  25. M. Conforti, C. De Angelis, and T.R. Akylas, Phys. Rev. A 83 (2011) 043822.
  26. M. Johansson, K. Kirr, A.S. Kovalev, and L. Kroon, Physica Scripta 83 (2011) 065005.
  27. A. Gorbach and M. Johansson, Eur. Phys. J. D 29 (2004) 77.
  28. M. Johansson and A. Gorbach, Phys. Rev. E 70 (2004) 057604.
  29. R. Morandotti, D. Mandelik, Y. Silberberg, J.S. Aitchison, M. Sorel, D.N. Christodoulides, A.A. Sukhorukov, and Y.S. Kivshar, Opt. Lett. 29 (2004) 2890.
  30. Tr.X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340 (2014) 179.
  31. Y. Nogami, F.M. Toyama, and Z. Zhao, J. Phys. A: Math. Gen. 28 (1995) 1413.
  32. Tr.X. Tran, X.N. Nguyen, and D.C. Duong, J. Opt. Soc. Am. B 31 (2014) 1132.
  33. Tr.X. Tran, X.N. Nguyen, and F. Biancalana, Phys. Rev. A 91 (2015) 023814.
  34. Tr.X. Tran and D.C. Duong, Ann. Phys. 361 (2015) 501.
  35. W. Heisenberg, Rev. Mod. Phys. 29 (1957) 269.
  36. D.C. Ionescu, R. Reinhardt, B. Muller, and W. Greiner, Phys. Rev. A 38 (1988) 616.
  37. A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421.
  38. M.J. Esteban and E. Séré, Discrete Contin. Dyn. Syst. 8 (2002) 381.
  39. I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62.
  40. N. Kemmer, Helv. Phys. Acta 10 (1937) 47.
  41. E. Fermi and C.N. Yang, Phys. Rev. 76 (1949) 1739.
  42. G.P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  43. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: from Fiber to Photonic Crystals, 5th ed. (Academic, 2003).
  44. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 2726.
  45. P.G. Kevrekidis and M.I. Weinstein, Math. Comput. Simul. 62 (2003) 65.
  46. G.P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  47. Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 90 (2014) 023857.