CuO nanoparticles prepared by alcohol-assisted hydrothermal synthesis for gas-sensing application: effect of pH value
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/18283Keywords:
alcohol-assisted hydrothermal; agglomeration; CuO; pH control; H2 detection;Abstract
CuO nanoparticles were synthesized by alcohol-assisted hydrothermal method at various pH values, using sodium hydroxide as a precursor for pH control. The chemical composition, morphological and structural properties of the obtained CuO nanoparticles were investigated by the Raman and energy-dispersive X-ray spectroscopies, the field-emission scanning electron microscopy, and the X-ray diffraction. The results reveal that although the pH value does not affect the formation of the CuO phase, it strongly influences the crystalline size, the morphology, and the particle-agglomeration level of CuO. The differences in the morphology and the crystalline size of CuO nanoparticles are ascribed to various H+/OH- ratios of the growth solution. Meanwhile, with the optimized particle size, the CuO nanoparticles-based sensor can be used as a potential candidate for CO and/or H2 detection.
Downloads
Metrics
References
E. Batsaikhan, C.-H. Lee, H. Hsu, C.-M. Wu, J.-C. Peng, M.-H. Ma, S. Deleg, W.-H. Li, Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect, ACS Omega 5 (2020) 3849. DOI: https://doi.org/10.1021/acsomega.9b02913
R. Siavash Moakhar, S.M. Hosseini-Hosseinabad, S. Masudy-Panah, A. Seza, M. Jalali, H. Fallah-Arani, F. Dabir, S. Gholipour, Y. Abdi, M. Bagheri-Hariri, N. Riahi-Noori, Y.-F. Lim, A. Hagfeldt, M. Saliba, Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review, Advanced Materials 33 (2021) 2007285. DOI: https://doi.org/10.1002/adma.202007285
M. Chen, Y. He, Q. Ye, Z. Zhang, Y. Hu, Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites, International Journal of Heat and Mass Transfer 130 (2019) 1133. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.026
A.F. Zedan, A.T. Mohamed, M.S. El-Shall, S.Y. AlQaradawi, A.S. AlJaber, Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation, RSC Advances 8 (2018) 19499. DOI: https://doi.org/10.1039/C8RA03623C
G. Peng, S. Wu, J.E. Ellis, X. Xu, G. Xu, C. Yu, A. Star, Single-walled carbon nanotubes templated CuO networks for gas sensing, Journal of Materials Chemistry C 4 (2016) 6575. DOI: https://doi.org/10.1039/C6TC01722C
X. Wang, J. Yang, L. Shi, M. Gao, Surfactant-free synthesis of CuO with controllable morphologies and enhanced photocatalytic property, Nanoscale Research Letters 11 (2016) 1. DOI: https://doi.org/10.1186/s11671-016-1278-z
C. Li, S. Chen, X. Gao, W. Zhang, Y. Wang, Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate, Journal of Colloid and Interface Science 588 (2021) 269. DOI: https://doi.org/10.1016/j.jcis.2020.12.078
G.N. Rao, Y.D. Yao, J.W. Chen, Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing, Journal of Applied Physics 105 (2009) 093901. DOI: https://doi.org/10.1063/1.3120785
M. Fukuda, N. Koga, Kinetics and Mechanisms of the Thermal Decomposition of Copper(II) Hydroxide: A Consecutive Process Comprising Induction Period, Surface Reaction, and Phase Boundary-Controlled Reaction, The Journal of Physical Chemistry C 122 (2018) 12869. DOI: https://doi.org/10.1021/acs.jpcc.8b03260
R. Nithiyavathi, S. John Sundaram, G. Theophil Anand, D. Raj Kumar, A. Dhayal Raj, D.A. Al Farraj, R.M. Aljowaie, M.R. AbdelGawwad, Y. Samson, K. Kaviyarasu, Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens, Journal of Infection and Public Health 14 (2021) 1893. DOI: https://doi.org/10.1016/j.jiph.2021.10.022
S. Bilge, B. Dogan-Topal, E.B. Atici, A. Sınağ, S.A. Ozkan, Rod-like CuO nanoparticles/waste masks carbon modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-cancer drug pazopanib in biological and pharmaceutical samples, Sensors and Actuators B: Chemical 343 (2021) 130109. DOI: https://doi.org/10.1016/j.snb.2021.130109
L. Zhou, S. Wang, D. Xu, Y. Guo, Impact of Mixing for the Production of CuO Nanoparticles in Supercritical Hydrothermal Synthesis, Industrial & Engineering Chemistry Research 53 (2014) 481. DOI: https://doi.org/10.1021/ie4029413
M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal Synthesis of CuO Nanoparticles: Study on Effects of Operational Conditions on Yield, Purity, and Size of the Nanoparticles, Industrial & Engineering Chemistry Research 50 (2011) 3540. DOI: https://doi.org/10.1021/ie1017089
N.M. Hung, N.M. Hieu, N.D. Chinh, T.T. Hien, N.D. Quang, S. Majumder, G. Choi, C. Kim, D. Kim, Rb2CO3-decorated In2O3 nanoparticles for the room-temperature detection of sub-ppm level NO2, Sensors and Actuators B: Chemical 313 (2020) 128001. DOI: https://doi.org/10.1016/j.snb.2020.128001
N.M. Hung, N.D. Chinh, T.D. Nguyen, E.T. Kim, G. Choi, C. Kim, D. Kim, Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites, Ceramics International 46 (2020) 29233. DOI: https://doi.org/10.1016/j.ceramint.2020.08.097
J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals, Journal of Raman Spectroscopy 30 (1999) 413. DOI: https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N
H.F. Abbasov, Effect of sodium hydroxide on the interactions of polyethylene glycol macromolecules with water molecules, Journal of Polymer Research 24 (2017) 115. DOI: https://doi.org/10.1007/s10965-017-1275-7
C. Li, J. Yang, Z. Quan, P. Yang, D. Kong, J. Lin, Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources, Chemistry of Materials 19 (2007) 4933. DOI: https://doi.org/10.1021/cm071668g
Y. Luo, C. Zhang, Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature, Journal of Alloys and Compounds 747 (2018) 550. DOI: https://doi.org/10.1016/j.jallcom.2018.03.068
L. De Luca, A. Donato, S. Santangelo, G. Faggio, G. Messina, N. Donato, G. Neri, Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites, International Journal of Hydrogen Energy 37 (2012) 1842. DOI: https://doi.org/10.1016/j.ijhydene.2011.10.017
S. Pati, P. Banerji, S.B. Majumder, MOCVD grown ZnO thin film gas sensors: Influence of microstructure, Sensors and Actuators A: Physical 213 (2014) 52. DOI: https://doi.org/10.1016/j.sna.2014.04.005
J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B: Chemical 84 (2002) 258. DOI: https://doi.org/10.1016/S0925-4005(02)00034-5
S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Köck, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Gas sensing properties of novel CuO nanowire devices, Sensors and Actuators B: Chemical 187 (2013) 50. DOI: https://doi.org/10.1016/j.snb.2012.09.034
V.V. Plashnitsa, S.A. Anggraini, N. Miura, CO sensing characteristics of YSZ-based planar sensor using Rh-sensing electrode composed of tetrahedral sub-micron particles, Electrochemistry communications 13 (2011) 444. DOI: https://doi.org/10.1016/j.elecom.2011.02.016
D. Choi, H. Kim, M. Son, H. Kim, H.C. Lee, C.S. Lee, Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters, New Journal of Chemistry 43 (2019) 7814. DOI: https://doi.org/10.1039/C9NJ00289H
T. Weis, R. Lipperheide, U. Wille, S. Brehme, Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model, Journal of Applied Physics 92 (2002) 1411. DOI: https://doi.org/10.1063/1.1488246
N.V. Hieu, Textbook of semiconducting metal oxide nanowires-based gas sensors, Bach Khoa Publishing House, Ha Noi, 2015.
G. Korotcenkov, Handbook of Gas Sensor Materials, Springer, New York, 2013. DOI: https://doi.org/10.1007/978-1-4614-7165-3
O. Lupan, V. Postica, N. Ababii, M. Hoppe, V. Cretu, I. Tiginyanu, V. Sontea, T. Pauporté, B. Viana, R. Adelung, Influence of CuO nanostructures morphology on hydrogen gas sensing performances, Microelectronic Engineering 164 (2016) 63. DOI: https://doi.org/10.1016/j.mee.2016.07.008
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 27-10-2023
Published 08-12-2023