CuO nanoparticles prepared by alcohol-assisted hydrothermal synthesis for gas-sensing application: effect of pH value

Author affiliations

Authors

  • Nguyen Manh Hung Le Quy Don Technical University https://orcid.org/0000-0003-0652-7009
  • Phung Dinh Hoat Department of Physics, Le Quy Don Technical University, Hanoi 100000, Viet Nam
  • Pham Tien Hung Department of Physics, Le Quy Don Technical University, Hanoi 100000, Viet Nam https://orcid.org/0000-0001-7486-5873
  • Nguyen Van Hoang Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi, Vietnam https://orcid.org/0000-0001-8149-7538

DOI:

https://doi.org/10.15625/0868-3166/18283

Keywords:

alcohol-assisted hydrothermal; agglomeration; CuO; pH control; H2 detection;

Abstract

CuO nanoparticles were synthesized by alcohol-assisted hydrothermal method at various pH values, using sodium hydroxide as a precursor for pH control. The chemical composition, morphological and structural properties of the obtained CuO nanoparticles were investigated by the Raman and energy-dispersive X-ray spectroscopies, the field-emission scanning electron microscopy, and the X-ray diffraction. The results reveal that although the pH value does not affect the formation of the CuO phase, it strongly influences the crystalline size, the morphology, and the particle-agglomeration level of CuO. The differences in the morphology and the crystalline size of CuO nanoparticles are ascribed to various H+/OH- ratios of the growth solution. Meanwhile, with the optimized particle size, the CuO nanoparticles-based sensor can be used as a potential candidate for CO and/or H2 detection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

E. Batsaikhan, C.-H. Lee, H. Hsu, C.-M. Wu, J.-C. Peng, M.-H. Ma, S. Deleg, W.-H. Li, Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect, ACS Omega 5 (2020) 3849. DOI: https://doi.org/10.1021/acsomega.9b02913

R. Siavash Moakhar, S.M. Hosseini-Hosseinabad, S. Masudy-Panah, A. Seza, M. Jalali, H. Fallah-Arani, F. Dabir, S. Gholipour, Y. Abdi, M. Bagheri-Hariri, N. Riahi-Noori, Y.-F. Lim, A. Hagfeldt, M. Saliba, Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review, Advanced Materials 33 (2021) 2007285. DOI: https://doi.org/10.1002/adma.202007285

M. Chen, Y. He, Q. Ye, Z. Zhang, Y. Hu, Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites, International Journal of Heat and Mass Transfer 130 (2019) 1133. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.026

A.F. Zedan, A.T. Mohamed, M.S. El-Shall, S.Y. AlQaradawi, A.S. AlJaber, Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation, RSC Advances 8 (2018) 19499. DOI: https://doi.org/10.1039/C8RA03623C

G. Peng, S. Wu, J.E. Ellis, X. Xu, G. Xu, C. Yu, A. Star, Single-walled carbon nanotubes templated CuO networks for gas sensing, Journal of Materials Chemistry C 4 (2016) 6575. DOI: https://doi.org/10.1039/C6TC01722C

X. Wang, J. Yang, L. Shi, M. Gao, Surfactant-free synthesis of CuO with controllable morphologies and enhanced photocatalytic property, Nanoscale Research Letters 11 (2016) 1. DOI: https://doi.org/10.1186/s11671-016-1278-z

C. Li, S. Chen, X. Gao, W. Zhang, Y. Wang, Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate, Journal of Colloid and Interface Science 588 (2021) 269. DOI: https://doi.org/10.1016/j.jcis.2020.12.078

G.N. Rao, Y.D. Yao, J.W. Chen, Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing, Journal of Applied Physics 105 (2009) 093901. DOI: https://doi.org/10.1063/1.3120785

M. Fukuda, N. Koga, Kinetics and Mechanisms of the Thermal Decomposition of Copper(II) Hydroxide: A Consecutive Process Comprising Induction Period, Surface Reaction, and Phase Boundary-Controlled Reaction, The Journal of Physical Chemistry C 122 (2018) 12869. DOI: https://doi.org/10.1021/acs.jpcc.8b03260

R. Nithiyavathi, S. John Sundaram, G. Theophil Anand, D. Raj Kumar, A. Dhayal Raj, D.A. Al Farraj, R.M. Aljowaie, M.R. AbdelGawwad, Y. Samson, K. Kaviyarasu, Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens, Journal of Infection and Public Health 14 (2021) 1893. DOI: https://doi.org/10.1016/j.jiph.2021.10.022

S. Bilge, B. Dogan-Topal, E.B. Atici, A. Sınağ, S.A. Ozkan, Rod-like CuO nanoparticles/waste masks carbon modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-cancer drug pazopanib in biological and pharmaceutical samples, Sensors and Actuators B: Chemical 343 (2021) 130109. DOI: https://doi.org/10.1016/j.snb.2021.130109

L. Zhou, S. Wang, D. Xu, Y. Guo, Impact of Mixing for the Production of CuO Nanoparticles in Supercritical Hydrothermal Synthesis, Industrial & Engineering Chemistry Research 53 (2014) 481. DOI: https://doi.org/10.1021/ie4029413

M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal Synthesis of CuO Nanoparticles: Study on Effects of Operational Conditions on Yield, Purity, and Size of the Nanoparticles, Industrial & Engineering Chemistry Research 50 (2011) 3540. DOI: https://doi.org/10.1021/ie1017089

N.M. Hung, N.M. Hieu, N.D. Chinh, T.T. Hien, N.D. Quang, S. Majumder, G. Choi, C. Kim, D. Kim, Rb2CO3-decorated In2O3 nanoparticles for the room-temperature detection of sub-ppm level NO2, Sensors and Actuators B: Chemical 313 (2020) 128001. DOI: https://doi.org/10.1016/j.snb.2020.128001

N.M. Hung, N.D. Chinh, T.D. Nguyen, E.T. Kim, G. Choi, C. Kim, D. Kim, Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites, Ceramics International 46 (2020) 29233. DOI: https://doi.org/10.1016/j.ceramint.2020.08.097

J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals, Journal of Raman Spectroscopy 30 (1999) 413. DOI: https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N

H.F. Abbasov, Effect of sodium hydroxide on the interactions of polyethylene glycol macromolecules with water molecules, Journal of Polymer Research 24 (2017) 115. DOI: https://doi.org/10.1007/s10965-017-1275-7

C. Li, J. Yang, Z. Quan, P. Yang, D. Kong, J. Lin, Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources, Chemistry of Materials 19 (2007) 4933. DOI: https://doi.org/10.1021/cm071668g

Y. Luo, C. Zhang, Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature, Journal of Alloys and Compounds 747 (2018) 550. DOI: https://doi.org/10.1016/j.jallcom.2018.03.068

L. De Luca, A. Donato, S. Santangelo, G. Faggio, G. Messina, N. Donato, G. Neri, Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites, International Journal of Hydrogen Energy 37 (2012) 1842. DOI: https://doi.org/10.1016/j.ijhydene.2011.10.017

S. Pati, P. Banerji, S.B. Majumder, MOCVD grown ZnO thin film gas sensors: Influence of microstructure, Sensors and Actuators A: Physical 213 (2014) 52. DOI: https://doi.org/10.1016/j.sna.2014.04.005

J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B: Chemical 84 (2002) 258. DOI: https://doi.org/10.1016/S0925-4005(02)00034-5

S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Köck, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Gas sensing properties of novel CuO nanowire devices, Sensors and Actuators B: Chemical 187 (2013) 50. DOI: https://doi.org/10.1016/j.snb.2012.09.034

V.V. Plashnitsa, S.A. Anggraini, N. Miura, CO sensing characteristics of YSZ-based planar sensor using Rh-sensing electrode composed of tetrahedral sub-micron particles, Electrochemistry communications 13 (2011) 444. DOI: https://doi.org/10.1016/j.elecom.2011.02.016

D. Choi, H. Kim, M. Son, H. Kim, H.C. Lee, C.S. Lee, Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters, New Journal of Chemistry 43 (2019) 7814. DOI: https://doi.org/10.1039/C9NJ00289H

T. Weis, R. Lipperheide, U. Wille, S. Brehme, Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model, Journal of Applied Physics 92 (2002) 1411. DOI: https://doi.org/10.1063/1.1488246

N.V. Hieu, Textbook of semiconducting metal oxide nanowires-based gas sensors, Bach Khoa Publishing House, Ha Noi, 2015.

G. Korotcenkov, Handbook of Gas Sensor Materials, Springer, New York, 2013. DOI: https://doi.org/10.1007/978-1-4614-7165-3

O. Lupan, V. Postica, N. Ababii, M. Hoppe, V. Cretu, I. Tiginyanu, V. Sontea, T. Pauporté, B. Viana, R. Adelung, Influence of CuO nanostructures morphology on hydrogen gas sensing performances, Microelectronic Engineering 164 (2016) 63. DOI: https://doi.org/10.1016/j.mee.2016.07.008

Downloads

Published

08-12-2023

How to Cite

[1]
N. M. Hung, P. D. Hoat, P. T. Hung and N. V. Hoang, CuO nanoparticles prepared by alcohol-assisted hydrothermal synthesis for gas-sensing application: effect of pH value, Comm. Phys. 33 (2023) 435. DOI: https://doi.org/10.15625/0868-3166/18283.

Issue

Section

Papers
Received 19-04-2023
Accepted 27-10-2023
Published 08-12-2023

Similar Articles

You may also start an advanced similarity search for this article.