Nonlinear Optics in Waveguide Arrays and Photonic Nanowires
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/1/9001Keywords:
nonlinear optics, waveguide array, photonic nanowire, soliton, diffractive resonant radiation, Dirac solitonAbstract
In this paper we review our works in the field of nonlinear optics in waveguide arrays (WAs) and photonic nanowires. We first focus on the new equation governing light propagation in optical fibers with sub-wavelength cores which simultaneously takes into account (i) the vector nature of the electromagnetic modes inside fibers, (ii) the strong dispersion of the nonlinearity inside the spectral body of the pulse, (iii) and the full variations of the vector mode profiles with frequency. From this equation we have shown that a new kind of nonlinearity emerges in subwavelength-core fibers which can suppress the Raman self-frequency shift of solitons. We then discuss some nonlinear phenomena in WAs such as the emission of the diffractive resonant radiation from spatial discrete solitons and the anomalous recoil effect. Finally, we review our works on the optical analogues of Dirac solitons in quantum relativistic physics in binary waveguide arrays (BWAs) for both fundamental and higher-order solitons, and its interaction.
Downloads
Metrics
References
G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013). DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5
G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd. (Academic Press, 2008).
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817–823. DOI: https://doi.org/10.1038/nature01936
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1–126. DOI: https://doi.org/10.1016/j.physrep.2008.04.004
A. Hasegawa and Y. Kodama, IEEE J. Quantum Electron. 23 (1987) 510–524. DOI: https://doi.org/10.1109/JQE.1987.1073392
J. P. Gordon, Opt. Lett. 11 (1986) 662–664. DOI: https://doi.org/10.1364/OL.11.000662
A. L. Gaeta, Opt. Lett. 27 (2002) 924–926. DOI: https://doi.org/10.1364/OL.27.000924
C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, Opt. Lett. 30 (2005) 1980–1982. DOI: https://doi.org/10.1364/OL.30.001980
P. St. J. Russell, Science 299 (2003) 358–362. DOI: https://doi.org/10.1126/science.1079280
J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78 (2006) 1135–1184.
N. Akhmediev and M. Karlsson, Phys. Rev. A 51 (1995) 2602–2607. DOI: https://doi.org/10.1103/PhysRevA.51.2602
D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301 (2003) 1705–1707. DOI: https://doi.org/10.1126/science.1088516
F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70 (2004) 016615. DOI: https://doi.org/10.1103/PhysRevE.70.016615
Tong et al., Nature 426 (2003) 816–818. DOI: https://doi.org/10.1038/nature02193
F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, and A. V. Jiahui Peng, Opt. Lett. 33 (2008) 2680–2682. DOI: https://doi.org/10.1364/OL.33.002680
S. Afshar V. and T. M. Monro, Opt. Express 17 (2009) 2298–2318. DOI: https://doi.org/10.1364/OE.17.002298
M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Opt. Express 16 (2008) 1300–1320. DOI: https://doi.org/10.1364/OE.16.001300
M. A. Foster, K. D. Moll, and A. L. Gaeta, Opt. Express 12 (2004) 2880–2887. DOI: https://doi.org/10.1364/OPEX.12.002880
A. Zheltikov, J. Opt. Soc. Am. B 22 (2005) 1100–1104. DOI: https://doi.org/10.1364/JOSAB.22.001100
Tr. X. Tran and F. Biancalana, Opt. Express 17 (2009) 17934–17949. DOI: https://doi.org/10.1364/OE.17.017934
F. Biancalana, Tr. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, Phys. Rev. Lett. 105 (2010) 093904. DOI: https://doi.org/10.1103/PhysRevLett.105.093904
P. V. Mamyshev and S. V. Chernikov, Opt. Lett. 15 (1990) 1076–1078. DOI: https://doi.org/10.1364/OL.15.001076
M. Kolesik and J. V. Moloney, Phys. Rev. E 70 (2004) 036604 (2004). DOI: https://doi.org/10.1103/PhysRevE.70.036604
M. Kolesik, E. M. Wright, and J. V. Moloney, Appl. Phys. B 79 (2004) 293–300. DOI: https://doi.org/10.1007/s00340-004-1551-1
J. Lægsgaard, Opt. Express 15 (2007) 16110–16123. DOI: https://doi.org/10.1364/OE.15.016110
A. L. Jones, J. Opt. Soc. Am. 55 (1965) 261. DOI: https://doi.org/10.1364/JOSA.55.000261
D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13 (1988) 794. DOI: https://doi.org/10.1364/OL.13.000794
Y. S. Kivshar and G. P. Agrawal, Optical solitons: From Fibers to Photonic Crystals (Academic Press, New York, 2003). DOI: https://doi.org/10.1016/B978-012410590-4/50012-7
T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752. DOI: https://doi.org/10.1103/PhysRevLett.83.4752
R. Morandotti, U. Peschel, and J. S. Aitchison, Phys. Rev. Lett. 83 (1999) 4756. DOI: https://doi.org/10.1103/PhysRevLett.83.4756
M. Ghulinyan, Claudio J. Oton, Zeno Gaburro, and Lorenzo Pavesi, Phys. Rev. Lett. 94 (2005) 127401. DOI: https://doi.org/10.1103/PhysRevLett.94.127401
H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, and A. Bräuer, Phys. Rev. Lett. 96 (2006) 023901. DOI: https://doi.org/10.1103/PhysRevLett.96.023901
S. Longhi et al., Phys. Rev. Lett. 96 (2006) 243901. DOI: https://doi.org/10.1103/PhysRevLett.96.099602
Y. Lahini et al., Phys. Rev. Lett. 100 (2008) 013906. DOI: https://doi.org/10.1103/PhysRevLett.100.013906
S. Longhi, Phys. Rev. B 81 (2010) 075102. DOI: https://doi.org/10.1103/PhysRevB.81.075102
F. Dreisow et al., EPL 97 (2012) 10008. DOI: https://doi.org/10.1209/0295-5075/97/10008
S. Longhi, Opt. Lett. 35 (2010) 235. DOI: https://doi.org/10.1364/OL.35.000235
F. Dreisow et al., Phys. Rev. Lett. 105 (2010) 143902. DOI: https://doi.org/10.1103/PhysRevLett.105.143902
S. Longhi, Appl. Phys. B 104 (2011) 453. DOI: https://doi.org/10.1007/s00340-011-4628-7
J. M. Zeuner et al., Phys. Rev. Lett. 109 (2012) 023602. DOI: https://doi.org/10.1103/PhysRevLett.109.023602
W. Heisenberg, Rev. Modern Phys. 29 (1957) 269. DOI: https://doi.org/10.1103/RevModPhys.29.269
D. C. Ionescu et al., Phys. Rev. A 38 (1988) 616. DOI: https://doi.org/10.1103/PhysRevA.38.616
A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421. DOI: https://doi.org/10.1023/A:1014293104217
M. J. Esteban and E. Sere, Discrete Contin. Dyn. Syst. 8 (2002) 381. DOI: https://doi.org/10.3934/dcds.2002.8.381
I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62. DOI: https://doi.org/10.1016/0003-4916(76)90057-9
Tr. X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903. DOI: https://doi.org/10.1103/PhysRevLett.110.113903
Tr. X. Tran and F. Biancalana, Opt. Express 21 (2013) 17539 – 17546. DOI: https://doi.org/10.1364/OE.21.017539
Tr. X. Tran and Q. Nguyen-The, J. Lightwave Technol. 34 (2016) 4105 – 4110. DOI: https://doi.org/10.1109/JLT.2016.2590562
Tr. X. Tran et al., "Optical analogue of relativistic Dirac solitons in binary waveguide arrays,'' Ann. Phys. 340 (2014) 179 – 187. DOI: https://doi.org/10.1016/j.aop.2013.10.017
Tr. X. Tran et al., "Dirac soliton stability and interaction in binary waveguide arrays," J. Opt. Soc. A. B 31 (2014) 1132-1136. DOI: https://doi.org/10.1364/JOSAB.31.001132
Tr. X. Tran and D. C. Duong, "Higher-order Dirac solitons in binary waveguide arrays," Ann. Phys. 361 (2015) 501-508. DOI: https://doi.org/10.1016/j.aop.2015.07.015
Tr. X. Tran et al., "Dirac solitons in square binary waveguide lattices," Phys. Rev. A 91, 023814 (2015). DOI: https://doi.org/10.1103/PhysRevA.91.023814
M. D. O’Donnell et al., J. Am. Ceram. Soc. 90, 1448 (2007).
A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001). DOI: https://doi.org/10.1103/PhysRevLett.87.203901
V. N. Serkin, T. L. Belyaeva, G. H. Corro, and M. A. Granados, Quantum Electron. 33, 325 (2003). DOI: https://doi.org/10.1070/QE2003v033n04ABEH002413
J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). DOI: https://doi.org/10.1103/RevModPhys.78.1135
A. A. Sukhorukov and Y. S. Kivshar, Opt. Lett. 27, 2112 (2002). DOI: https://doi.org/10.1364/OL.27.002112
Y. Nogami, F. M. Toyama, Z. Zhao, J. Phys. A: Math. Gen. 28, 1413 (1995). DOI: https://doi.org/10.1088/0305-4470/28/5/025
V. E. Zakharov and A. B Shabat, Sov. Phys. — JETP 34, 62 (1972).
H. A. Haus and M. N. Islam, IEEE J. Quantum Electron. 21, 1172 (1985). DOI: https://doi.org/10.1109/JQE.1985.1072805
J. Satsuma and N.Yajima, Progr. Theoret. Phys. Suppl. 55, 284 (1974). DOI: https://doi.org/10.1143/PTPS.55.284
Tr. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 90, 023857 (2014). DOI: https://doi.org/10.1103/PhysRevA.90.023857
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 16-01-2017