Nonlinear Optics in Waveguide Arrays and Photonic Nanowires

Tran Xuan Truong
Author affiliations

Authors

  • Tran Xuan Truong Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/0868-3166/27/1/9001

Keywords:

nonlinear optics, waveguide array, photonic nanowire, soliton, diffractive resonant radiation, Dirac soliton

Abstract

In this paper we review our works in the field of nonlinear optics in waveguide arrays (WAs) and photonic nanowires. We first focus on the new equation governing light propagation in optical fibers with sub-wavelength cores which simultaneously takes into account (i) the vector nature of the electromagnetic modes inside fibers, (ii) the strong dispersion of the nonlinearity inside the spectral body of the pulse, (iii) and the full variations of the vector mode profiles with frequency. From this equation we have shown that a new kind of nonlinearity emerges in subwavelength-core fibers which can suppress the Raman self-frequency shift of solitons. We then discuss some nonlinear phenomena in WAs such as the emission of the diffractive resonant radiation from spatial discrete solitons and the anomalous recoil effect. Finally, we review our works on the optical analogues of Dirac solitons in quantum relativistic physics in binary waveguide arrays (BWAs) for both fundamental and higher-order solitons, and its interaction.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013). DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd. (Academic Press, 2008).

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817–823. DOI: https://doi.org/10.1038/nature01936

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1–126. DOI: https://doi.org/10.1016/j.physrep.2008.04.004

A. Hasegawa and Y. Kodama, IEEE J. Quantum Electron. 23 (1987) 510–524. DOI: https://doi.org/10.1109/JQE.1987.1073392

J. P. Gordon, Opt. Lett. 11 (1986) 662–664. DOI: https://doi.org/10.1364/OL.11.000662

A. L. Gaeta, Opt. Lett. 27 (2002) 924–926. DOI: https://doi.org/10.1364/OL.27.000924

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, Opt. Lett. 30 (2005) 1980–1982. DOI: https://doi.org/10.1364/OL.30.001980

P. St. J. Russell, Science 299 (2003) 358–362. DOI: https://doi.org/10.1126/science.1079280

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78 (2006) 1135–1184.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51 (1995) 2602–2607. DOI: https://doi.org/10.1103/PhysRevA.51.2602

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301 (2003) 1705–1707. DOI: https://doi.org/10.1126/science.1088516

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70 (2004) 016615. DOI: https://doi.org/10.1103/PhysRevE.70.016615

Tong et al., Nature 426 (2003) 816–818. DOI: https://doi.org/10.1038/nature02193

F. Benabid, F. Biancalana, P. S. Light, F. Couny, A. Luiten, P. J. Roberts, and A. V. Jiahui Peng, Opt. Lett. 33 (2008) 2680–2682. DOI: https://doi.org/10.1364/OL.33.002680

S. Afshar V. and T. M. Monro, Opt. Express 17 (2009) 2298–2318. DOI: https://doi.org/10.1364/OE.17.002298

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Opt. Express 16 (2008) 1300–1320. DOI: https://doi.org/10.1364/OE.16.001300

M. A. Foster, K. D. Moll, and A. L. Gaeta, Opt. Express 12 (2004) 2880–2887. DOI: https://doi.org/10.1364/OPEX.12.002880

A. Zheltikov, J. Opt. Soc. Am. B 22 (2005) 1100–1104. DOI: https://doi.org/10.1364/JOSAB.22.001100

Tr. X. Tran and F. Biancalana, Opt. Express 17 (2009) 17934–17949. DOI: https://doi.org/10.1364/OE.17.017934

F. Biancalana, Tr. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, Phys. Rev. Lett. 105 (2010) 093904. DOI: https://doi.org/10.1103/PhysRevLett.105.093904

P. V. Mamyshev and S. V. Chernikov, Opt. Lett. 15 (1990) 1076–1078. DOI: https://doi.org/10.1364/OL.15.001076

M. Kolesik and J. V. Moloney, Phys. Rev. E 70 (2004) 036604 (2004). DOI: https://doi.org/10.1103/PhysRevE.70.036604

M. Kolesik, E. M. Wright, and J. V. Moloney, Appl. Phys. B 79 (2004) 293–300. DOI: https://doi.org/10.1007/s00340-004-1551-1

J. Lægsgaard, Opt. Express 15 (2007) 16110–16123. DOI: https://doi.org/10.1364/OE.15.016110

A. L. Jones, J. Opt. Soc. Am. 55 (1965) 261. DOI: https://doi.org/10.1364/JOSA.55.000261

D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13 (1988) 794. DOI: https://doi.org/10.1364/OL.13.000794

Y. S. Kivshar and G. P. Agrawal, Optical solitons: From Fibers to Photonic Crystals (Academic Press, New York, 2003). DOI: https://doi.org/10.1016/B978-012410590-4/50012-7

T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752. DOI: https://doi.org/10.1103/PhysRevLett.83.4752

R. Morandotti, U. Peschel, and J. S. Aitchison, Phys. Rev. Lett. 83 (1999) 4756. DOI: https://doi.org/10.1103/PhysRevLett.83.4756

M. Ghulinyan, Claudio J. Oton, Zeno Gaburro, and Lorenzo Pavesi, Phys. Rev. Lett. 94 (2005) 127401. DOI: https://doi.org/10.1103/PhysRevLett.94.127401

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, and A. Bräuer, Phys. Rev. Lett. 96 (2006) 023901. DOI: https://doi.org/10.1103/PhysRevLett.96.023901

S. Longhi et al., Phys. Rev. Lett. 96 (2006) 243901. DOI: https://doi.org/10.1103/PhysRevLett.96.099602

Y. Lahini et al., Phys. Rev. Lett. 100 (2008) 013906. DOI: https://doi.org/10.1103/PhysRevLett.100.013906

S. Longhi, Phys. Rev. B 81 (2010) 075102. DOI: https://doi.org/10.1103/PhysRevB.81.075102

F. Dreisow et al., EPL 97 (2012) 10008. DOI: https://doi.org/10.1209/0295-5075/97/10008

S. Longhi, Opt. Lett. 35 (2010) 235. DOI: https://doi.org/10.1364/OL.35.000235

F. Dreisow et al., Phys. Rev. Lett. 105 (2010) 143902. DOI: https://doi.org/10.1103/PhysRevLett.105.143902

S. Longhi, Appl. Phys. B 104 (2011) 453. DOI: https://doi.org/10.1007/s00340-011-4628-7

J. M. Zeuner et al., Phys. Rev. Lett. 109 (2012) 023602. DOI: https://doi.org/10.1103/PhysRevLett.109.023602

W. Heisenberg, Rev. Modern Phys. 29 (1957) 269. DOI: https://doi.org/10.1103/RevModPhys.29.269

D. C. Ionescu et al., Phys. Rev. A 38 (1988) 616. DOI: https://doi.org/10.1103/PhysRevA.38.616

A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421. DOI: https://doi.org/10.1023/A:1014293104217

M. J. Esteban and E. Sere, Discrete Contin. Dyn. Syst. 8 (2002) 381. DOI: https://doi.org/10.3934/dcds.2002.8.381

I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62. DOI: https://doi.org/10.1016/0003-4916(76)90057-9

Tr. X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903. DOI: https://doi.org/10.1103/PhysRevLett.110.113903

Tr. X. Tran and F. Biancalana, Opt. Express 21 (2013) 17539 – 17546. DOI: https://doi.org/10.1364/OE.21.017539

Tr. X. Tran and Q. Nguyen-The, J. Lightwave Technol. 34 (2016) 4105 – 4110. DOI: https://doi.org/10.1109/JLT.2016.2590562

Tr. X. Tran et al., "Optical analogue of relativistic Dirac solitons in binary waveguide arrays,'' Ann. Phys. 340 (2014) 179 – 187. DOI: https://doi.org/10.1016/j.aop.2013.10.017

Tr. X. Tran et al., "Dirac soliton stability and interaction in binary waveguide arrays," J. Opt. Soc. A. B 31 (2014) 1132-1136. DOI: https://doi.org/10.1364/JOSAB.31.001132

Tr. X. Tran and D. C. Duong, "Higher-order Dirac solitons in binary waveguide arrays," Ann. Phys. 361 (2015) 501-508. DOI: https://doi.org/10.1016/j.aop.2015.07.015

Tr. X. Tran et al., "Dirac solitons in square binary waveguide lattices," Phys. Rev. A 91, 023814 (2015). DOI: https://doi.org/10.1103/PhysRevA.91.023814

M. D. O’Donnell et al., J. Am. Ceram. Soc. 90, 1448 (2007).

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001). DOI: https://doi.org/10.1103/PhysRevLett.87.203901

V. N. Serkin, T. L. Belyaeva, G. H. Corro, and M. A. Granados, Quantum Electron. 33, 325 (2003). DOI: https://doi.org/10.1070/QE2003v033n04ABEH002413

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). DOI: https://doi.org/10.1103/RevModPhys.78.1135

A. A. Sukhorukov and Y. S. Kivshar, Opt. Lett. 27, 2112 (2002). DOI: https://doi.org/10.1364/OL.27.002112

Y. Nogami, F. M. Toyama, Z. Zhao, J. Phys. A: Math. Gen. 28, 1413 (1995). DOI: https://doi.org/10.1088/0305-4470/28/5/025

V. E. Zakharov and A. B Shabat, Sov. Phys. — JETP 34, 62 (1972).

H. A. Haus and M. N. Islam, IEEE J. Quantum Electron. 21, 1172 (1985). DOI: https://doi.org/10.1109/JQE.1985.1072805

J. Satsuma and N.Yajima, Progr. Theoret. Phys. Suppl. 55, 284 (1974). DOI: https://doi.org/10.1143/PTPS.55.284

Tr. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 90, 023857 (2014). DOI: https://doi.org/10.1103/PhysRevA.90.023857

Downloads

Published

16-01-2017

How to Cite

[1]
T. X. Truong, “Nonlinear Optics in Waveguide Arrays and Photonic Nanowires”, Comm. Phys., vol. 27, no. 1, p. 1, Jan. 2017.

Issue

Section

Reviews
Received 13-12-2016
Published 16-01-2017

Most read articles by the same author(s)