Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays

Tran Xuan Truong, Nguyen Minh Hue, Phung Dinh Hoat
Author affiliations

Authors

  • Tran Xuan Truong Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Minh Hue Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Phung Dinh Hoat Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/0868-3166/27/3/10653

Keywords:

nonlinear optics, binary waveguide array, Dirac soliton

Abstract

We investigate the edge effects of the optical analogue of the quantum relativistic Dirac solitons in binary waveguide arrays with Kerr nonlinearity when one tail of the Dirac soliton is truncated. We show that if the outermost waveguide of the binary waveguide array hosts the intense component of the truncated Dirac soliton, then Dirac soliton will be repeatedly bent towards the binary waveguide array edge. In the contrast, if the outermost waveguide of the binary waveguide array hosts the weak component of the truncated Dirac soliton, then Dirac soliton will be pushed away from the binary waveguide array edge. To the best of our knowledge, these unique features have not been found in any other systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Reports 463 (2008) 1. DOI: https://doi.org/10.1016/j.physrep.2008.04.004

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424 (2003) 817. DOI: https://doi.org/10.1038/nature01936

T. Pertsch, P. Dannberg, W. Elflein, A. Brӓuer, and F. Lederer, Phys. Rev. Lett. 83 (1999) 4752. DOI: https://doi.org/10.1103/PhysRevLett.83.4752

R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenb erg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 4756. DOI: https://doi.org/10.1103/PhysRevLett.83.4756

M. Ghulinyan, C.J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D.S. Wiersma, Phys. Rev. Lett. 94 (2005) 127401. DOI: https://doi.org/10.1103/PhysRevLett.94.127401

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Brӓuer, and U. Peschel, Phys. Rev. Lett. 96 (2006) 023901. DOI: https://doi.org/10.1103/PhysRevLett.96.023901

Tr.X. Tran and F. Biancalana, Phys. Rev. Lett. 110 (2013) 113903. DOI: https://doi.org/10.1103/PhysRevLett.110.113903

Tr.X. Tran and F. Biancalana, Opt. Exp. 21 (2013) 17539. DOI: https://doi.org/10.1364/OE.21.017539

Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 89 (2014) 013826. DOI: https://doi.org/10.1103/PhysRevA.89.013826

S. Longhi, Phys. Rev. B 81 (2010) 075102. DOI: https://doi.org/10.1103/PhysRevB.81.075102

F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, EPL 97 (2012) 10008. DOI: https://doi.org/10.1209/0295-5075/97/10008

S. Longhi, Opt. Lett. 35 (2010) 235. DOI: https://doi.org/10.1364/OL.35.000235

F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, Phys. Rev. Lett. 105 (2010) 143902. DOI: https://doi.org/10.1103/PhysRevLett.105.143902

S. Longhi, Appl. Phys. B 104 (2011) 453. DOI: https://doi.org/10.1007/s00340-011-4628-7

J.M. Zeuner, N.K. Efremidis, R. Keil, F. Dreisow, D.N. Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit, Phys. Rev. Lett. 109 (2012) 023602. DOI: https://doi.org/10.1103/PhysRevLett.109.023602

Tr.X. Tran and F. Biancalana, Phys. Rev. A 96 (2017) 013831. DOI: https://doi.org/10.1103/PhysRevA.96.013831

R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398. DOI: https://doi.org/10.1103/PhysRevD.13.3398

R.B. Laughlin, “Nobel Lecture: Fractional quantization”, Rev. Mod. Phys. 71 (1999) 863. DOI: https://doi.org/10.1103/RevModPhys.71.863

M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82 (2010) 3045. DOI: https://doi.org/10.1103/RevModPhys.82.3045

X.L. Qi and S.C. Zhang, Rev. Mod. Phys. 83 (2011) 1057. DOI: https://doi.org/10.1103/RevModPhys.83.1057

M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature (London), 496 (2013) 196. DOI: https://doi.org/10.1038/nature12066

L. Lu, J.D. Joannopoulos, and M. Soljačic, Nat. Photonics 8 (2014) 821. DOI: https://doi.org/10.1038/nphoton.2014.248

A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 27 (2002) 2112. DOI: https://doi.org/10.1364/OL.27.002112

A.A. Sukhorukov and Y.S. Kivshar, Opt. Lett. 28 (2003) 2345. DOI: https://doi.org/10.1364/OL.28.002345

M. Conforti, C. De Angelis, and T.R. Akylas, Phys. Rev. A 83 (2011) 043822. DOI: https://doi.org/10.1103/PhysRevA.83.043822

M. Johansson, K. Kirr, A.S. Kovalev, and L. Kroon, Physica Scripta 83 (2011) 065005. DOI: https://doi.org/10.1088/0031-8949/83/06/065005

A. Gorbach and M. Johansson, Eur. Phys. J. D 29 (2004) 77. DOI: https://doi.org/10.1140/epjd/e2004-00017-3

M. Johansson and A. Gorbach, Phys. Rev. E 70 (2004) 057604. DOI: https://doi.org/10.1103/PhysRevE.70.057604

R. Morandotti, D. Mandelik, Y. Silberberg, J.S. Aitchison, M. Sorel, D.N. Christodoulides, A.A. Sukhorukov, and Y.S. Kivshar, Opt. Lett. 29 (2004) 2890. DOI: https://doi.org/10.1364/OL.29.002890

Tr.X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340 (2014) 179. DOI: https://doi.org/10.1016/j.aop.2013.10.017

Y. Nogami, F.M. Toyama, and Z. Zhao, J. Phys. A: Math. Gen. 28 (1995) 1413. DOI: https://doi.org/10.1088/0305-4470/28/5/025

Tr.X. Tran, X.N. Nguyen, and D.C. Duong, J. Opt. Soc. Am. B 31 (2014) 1132. DOI: https://doi.org/10.1364/JOSAB.31.001132

Tr.X. Tran, X.N. Nguyen, and F. Biancalana, Phys. Rev. A 91 (2015) 023814. DOI: https://doi.org/10.1103/PhysRevA.91.023814

Tr.X. Tran and D.C. Duong, Ann. Phys. 361 (2015) 501. DOI: https://doi.org/10.1016/j.aop.2015.07.015

W. Heisenberg, Rev. Mod. Phys. 29 (1957) 269. DOI: https://doi.org/10.1103/RevModPhys.29.269

D.C. Ionescu, R. Reinhardt, B. Muller, and W. Greiner, Phys. Rev. A 38 (1988) 616. DOI: https://doi.org/10.1103/PhysRevA.38.616

A. Zecca, Internat. J. Theoret. Phys. 41 (2002) 421. DOI: https://doi.org/10.1023/A:1014293104217

M.J. Esteban and E. Séré, Discrete Contin. Dyn. Syst. 8 (2002) 381. DOI: https://doi.org/10.3934/dcds.2002.8.381

I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100 (1976) 62. DOI: https://doi.org/10.1016/0003-4916(76)90057-9

N. Kemmer, Helv. Phys. Acta 10 (1937) 47.

E. Fermi and C.N. Yang, Phys. Rev. 76 (1949) 1739. DOI: https://doi.org/10.1103/PhysRev.76.1739

G.P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013). DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

Y.S. Kivshar and G.P. Agrawal, Optical Solitons: from Fiber to Photonic Crystals, 5th ed. (Academic, 2003). DOI: https://doi.org/10.1016/B978-012410590-4/50012-7

R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83 (1999) 2726. DOI: https://doi.org/10.1103/PhysRevLett.83.2726

P.G. Kevrekidis and M.I. Weinstein, Math. Comput. Simul. 62 (2003) 65. DOI: https://doi.org/10.1016/S0378-4754(02)00185-4

G.P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

Tr.X. Tran, D.C. Duong, and F. Biancalana, Phys. Rev. A 90 (2014) 023857. DOI: https://doi.org/10.1103/PhysRevA.90.023857

Downloads

Published

18-11-2017

How to Cite

[1]
T. X. Truong, N. M. Hue and P. D. Hoat, Edge Effects of Truncated Dirac Solitons in Binary Waveguide Arrays, Comm. Phys. 27 (2017) 205. DOI: https://doi.org/10.15625/0868-3166/27/3/10653.

Issue

Section

Papers
Received 05-09-2017
Accepted 20-10-2017
Published 18-11-2017