A coupling successive approximation method for solving Duffing equation and its application

Dao Huy Bich, Nguyen Dang Bich
Author affiliations

Authors

  • Dao Huy Bich Hanoi University of Science, VNU, Vietnam
  • Nguyen Dang Bich Institute for Building Science and Technology (IBST), Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/36/2/4095

Keywords:

General Duffing equation, coupling successive approximation method, chaos index, chaotic structures of solutions

Abstract

The paper proposes an algorithm to solve a general Duffing equation, in which a process of transforming the initial equation to a resulting equation is proposed, and then the coupling successive approximation method is applied to solve the resulting equation. By using this algorithm a special physical factor and complex-valued solutions to the general Duffing equation are revealed. The proposed algorithm does not use any assumption of small parameters in the equation solving. The coupling successive procedure provides an analytic approximated solution in both real-valued or complex-valued solution. The procedure also reveals a formula to evaluate the vibration frequency, \(\varphi\), of the non-linear equation. Since the first approximation solution is in a closed-form, the chaos index of the general Duffing equation and the chaotic characteristics of solutions can be predicted. Some examples are used to illustrate the proposed method. In the case of chaotic solution, the Pointcaré conjecture is used for solution verification. 

Downloads

Download data is not yet available.

Downloads

Published

10-06-2014

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 3 4 5 > >>