\(\textit{Fusarium fujikuroi}\) WQF5 isolated from \(\textit{Cephalotaxus mannii }\)Hook.f. as a producer of antibacterial agent and paclitaxel
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/17577Abstract
Cephalotaxus mannii Hook.f is a rare medicinal plant used for the treatment of leukemia, however, its fungal endophytes with antibacterial and anticancer properties have not been exploited yet. In this study, six fungal isolates were recovered from roots of C. mannii collected in Ha Giang province, Vietnam. Among them, ethyl acetate crude extract of strain WQF5 exhibited strong antibacterial activity against 5 tested pathogens with inhibition zones ranging from 13.0 ± 0.5 mm to 20.0 ± 0.4 mm. Sulforhodamine B assay showed that WQF5 extract possessed the most potent cytotoxic activity against lung cancer A549 and breast cancer MCF7 cell lines with IC50 values of 6.9 ± 0.7 µg/mL and 23.1 ± 1.9 µg/mL, respectively. PCR-based molecular marker screening revealed that the positive hits for essential genes encoding 10-deacetylbaccatin III-10-O-acetyltransferase (dbat) and C-13 phenylpropanoyl side chain-CoA acyltransferase (bapt) involved in paclitaxel production were found in the fungal isolate WQF5. In addition, isolate WQF5, identified as Fusarium fujikuroi by morphological and ITS analysis, also produced paclitaxel as shown by HPLC-DAD analysis. This is the first report of bioprospecting endophytic fungi isolated from C. mannii, in which the capability of producing paclitaxel of endophytic fungi was also proved for the first time. These findings addressed a potent candidate for paclitaxel production and provided excellent material for further investigations of how endophytic fungi from non-Taxus plant species synthesize paclitaxel.
Downloads
Metrics
References
Abdel-Fatah S. S., El-Batal A. I., El-Sherbiny G. M., Khalaf M. A., El-Sayed A. S., 2021. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. Biotechnol Rep, 30: e00623. https://doi.org/10.1016/ j.btre.2021.e00623
An C., Ma S., Shi X., Xue W., Liu C., Ding H., 2020. Diversity and antimicrobial activity of endophytic fungi isolated from Chloranthus japonicus Sieb in Qinling Mountains, China. International journal of molecular sciences, 21(17). https://doi.org/10.3390/ijms21175958
Cen Y.-K., Lin J.-G., Wang Y.-L., Wang J.-Y., Liu Z.-Q., Zheng Y.-G., 2020. The gibberellin producer Fusarium fujikuroi: Methods and technologies in the current toolkit. Frontiers in Bioengineering and Biotechnology. https://doi.org/810.3389/ fbioe.2020.00232
Chakravarthi B. V. S. K., Das P., Surendranath K., Karande A. A., Jayabaskaran C., 2008. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci, 33(2): 259–267. https://doi.org/10.1007/s12038-008-0043-6
Chen C.-Y., Chen S.-Y., Liu C.-W., Wu D.-H., Kuo C.-C., Lin C.-C., Chou H.-P., Wang Y.-Y., Tsai Y.-C., Lai M.-H., Chung C.-L., 2020. Invasion and colonization pattern of Fusarium fujikuroi in rice. Phytopathology®, 110(12): 1934–1945. https://doi.org/10.1094/phyto-03-20-0068-r
Das A., Rahman M. I., Ferdous A. S., Amin A., Rahman M. M., Nahar N., Uddin M. A., Islam M. R., Khan H., 2017. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLOS ONE, 12(6): e0178612. https://doi.org/10.1371/ journal.pone.0178612
Deshmukh S. K., Verekar S. A., Bhave S. V., 2015. Endophytic fungi: a reservoir of antibacterials. Front Microbiol. https://doi.org/510.3389/fmicb.2014.00715
El-Bialy H. A., El-Bastawisy H. S., 2020. Elicitors stimulate paclitaxel production by endophytic fungi isolated from ecologically altered Taxus baccata. J Radiat Res Appl Sci, 13(1): 79–87. https://doi.org/10.1080/16878507.2019.1702244
Elavarasi A., Rathna G. S., Kalaiselvam M., 2012. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed, 2(2, Supplement): S1081–S1085. https://doi.org/10.1016/ S2221-1691(12)60365-7
Garyali S., Kumar A., Reddy M. S., 2013. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. Journal of Microbiology and Biotechnology, 23(10): 1372–1380. https://doi.org/10.4014/jmb.1305.05070
Hilário F., Chapla V., Araujo A., Sano P., Bauab T., Santos L., 2016. Antimicrobial screening of endophytic fungi isolated from the aerial parts of Paepalanthus chiquitensis (Eriocaulaceae) led to the isolation of secondary metabolites produced by Fusarium fujikuroi. Journal of the Brazilian Chemical Society. https://doi.org/2810.21577/0103-5053.2 0160312
Ibrahim N. F., Mohd M. H., Mohamed Nor N. M. I., Zakaria L., 2016. Fusarium fujikuroi causing fusariosis of pineapple in peninsular Malaysia. Australasian Plant Dis Notes, 11(1): 21. https://doi.org/ 10.1007/s13314-016-0206-5
Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chand D., 2019. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep, 24: e00395. https://doi.org/ 10.1016/j.btre.2019.e00395
Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7): 1870–1874. https://doi.org/ 10.1093/molbev/msw054
Majoumouo M. S., Tincho M. B., Kouipou Toghueo R. M., Morris T., Hiss D. C., Boyom F. F., Mandal C., 2020. Cytotoxicity potential of endophytic fungi Extracts from Terminalia catappa against human cervical cancer cells. J Toxicol, 2020: 8871152. https://doi.org/10.1155/ 2020/8871152
Ngo C. C., Nguyen Q. H., Nguyen T. H., Quach N. T., Dudhagara P., Vu T. H. N., Le T. T. X., Le T. T. H., Do T. T. H., Nguyen V. D., Nguyen N. T., Phi Q.-T., 2021. Identification of fungal community associated with deterioration of optical observation instruments of museums in Northern Vietnam. Appl Sci, 11(12): 5351.
Quach N. T., Nguyen Vu T. H., Bui T. L., Pham A. T., An Nguyen T. T., Xuan Le T. T., Thuy Ta T. T., Dudhagara P., Phi Q. T., 2022. Genome-guided investigation provides new insights into secondary metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum. Polish Journal of Microbiology, 71(3): 381–394. https://doi.org/10.33073/pjm-2022-034.
Saithong P., Panthavee W., Stonsaovapak S., Congfa L., 2010. Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees. Maejo Int J Sci Technol, 4: 446–453.
Santos I. P. d., Silva L. C. N. d., Silva M. V. d., Araújo J. M. d., Cavalcanti M. d. S., Lima V. L. d. M., 2015. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiol. https://doi.org/610.3389/fmicb.2015.00350
Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13): 1107–1112. https://doi.org/10.1093/ jnci/82.13.1107
Subban K., Subramani R., Johnpaul M., 2013. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Natural product Research, 27(16): 1445–1449. https://doi.org/10.1080/14786419.2012.722091
Van Loc T., Lieu N. T., Thao T. T. P., Luu N. T., Anh H. N., Ha L. T. T., Van Chien T., Ninh P. T., Phong D. T., Van Sung T., 2017. The alkaloidal constituents of Cephalotaxus mannii collected in Lam Dong province, Vietnam. Chem Nat Compd, 53(6): 1122–1126. https://doi.org/ 10.1007/s10600-017-2214-x
Vu T. H. N., Pham N. S., Le P. C., Pham Q. A., Quach N. T., Nguyen V. T., Do T. T., Chu H. H., Phi Q. T., 2022. Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. Ann Microbiol, 72(1): 36. https://doi.org/10.1186/s13213-022-01693-5
Wiemann P., Sieber C. M., von Bargen K. W., Studt L., Niehaus E. M., Espino J. J., Huß K., Michielse C. B., Albermann S., Wagner D., Bergner S. V., Connolly L. R., Fischer A., Reuter G., Kleigrewe K., Bald T., Wingfield B. D., Ophir R., Freeman S., Hippler M., Smith K. M., Brown D. W., Proctor R. H., Münsterkötter M., Freitag M., Humpf H. U., Güldener U., Tudzynski B., 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS pathogens, 9(6): e1003475. https://doi.org/ 10.1371/journal.ppat.1003475
Yang Y., Zhao H., Barrero R. A., Zhang B., Sun G., Wilson I. W., Xie F., Walker K. D., Parks J. W., Bruce R., Guo G., Chen L., Zhang Y., Huang X., Tang Q., Liu H., Bellgard M. I., Qiu D., Lai J., Hoffman A., 2014. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics, 15(1): 69. https://doi.org/ 10.1186/1471-2164-15-69
Zhou X., Wang Z., Jiang K., Wei Y., Lin J., Sun X., Tang K., 2007. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Prikladnaia Biokhimiia i Mikrobiologiia, 43(4): 490–494. https://doi.org/10.1134/ S000368380704014X