Screening and characterization of paclitaxel-producing fungus \(\textit{Talaromyces wortmannii}\) WQF18 isolated from \(\textit{Cephalotaxus mannii }\)Hook. f..
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/18002Keywords:
Cephalotaxus mannii, cytotoxicity, dbat, endophytic fungi, paclitaxel, Talaromyces wortmannii.Abstract
Cephalotaxus mannii Hook. f. is a rare evergreen conifer native listed in the International Union for Conservation of Nature (IUCN) Red List, which is utilized for leukemia treatment. Although endophytic fungi from C. mannii was reported before, their cytotoxic property has not been revealed yet. In the present study, a total of 7 endophytic fungi were isolated from C. mannii collected in Ha Giang province, Vietnam, among which the isolate WQF18 was active against 5 tested pathogens with inhibition zones ranging from 18.0 ± 0.7 to 25.0 ± 0.4 mm. In addition, only ethyl acetate extract of isolate WQF18 showed cytotoxicity on A549 and MCF7 cell lines with IC50 values of 69.6 ± 2.3 µg/mL and 78.6 ± 1.6 µg/mL, respectively. PCR-based molecular screening revealed that the positive hits for both 10-deacetylbaccatin III-10-O-acetyl transferase (dbat) and taxadiene synthase (ts) genes involved in paclitaxel biosynthesis were only observed in the WQF18 isolate. Based on morphological and molecular identification, the WQF18 isolate was identified as Talaromyces wortmannii WQF18. The presence of paclitaxel in T. wortmannii WQF18 was further confirmed by dbat sequence alignment, phenotypic, and HPLC-DAD analysis. To the best of our knowledge, this is the first report demonstrating the paclitaxel-producing capability of endophytic fungi from C. mannii. These findings provide a new platform for deciphering paclitaxel biosynthesis of endophytic fungi from non-Taxus plants and further paclitaxel production.
Downloads
Metrics
References
Abdel-Fatah S. S., El-Batal A. I., El-Sherbiny G. M., Khalaf M. A., El-Sayed A. S., 2021. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. Biotechnol Rep, 30: e00623.
Bacon C. W., Porter J. K., Robbins J. D., Luttrell E. S., 1977. Epichloë typhina from toxic tall fescue grasses. Applied and environmental microbiology, 34(5): 576−581.
Bara R., Aly A. H., Pretsch A., Wray V., Wang B., Proksch P., Debbab A., 2013a. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot, 66(8): 491–493.
Bara R., Aly A. H., Wray V., Lin W., Proksch P., Debbab A., 2013b. Talaromins A and B, new cyclic peptides from the endophytic fungus Talaromyces wortmannii. Tetrahedron Lett., 54(13): 1686–1689.
Bara R., Zerfass I., Aly A. H., Goldbach-Gecke H., Raghavan V., Sass P., Mándi A., Wray V., Polavarapu P. L., Pretsch A., Lin W., Kurtán T., Debbab A., Brötz-Oesterhelt H., Proksch P., 2013c. Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus. J Med Chem, 56(8): 3257–3272.
Clevenger K. D., Bok J. W., Ye R., Miley G. P., Verdan M. H., Velk T., Chen C., Yang K., Robey M. T., Gao P., Lamprecht M., Thomas P. M., Islam M. N., Palmer J. M., Wu C. C., Keller N. P., Kelleher N. L., 2017. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nature chemical biology, 13(8): 895–901.
Das A., Rahman M. I., Ferdous A. S., Amin A., Rahman M. M., Nahar N., Uddin M. A., Islam M. R., Khan H., 2017. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLOS ONE, 12(6): e0178612.
El-Bialy H. A., El-Bastawisy H. S., 2020. Elicitors stimulate paclitaxel production by endophytic fungi isolated from ecologically altered Taxus baccata. Radiat Res Appl Sci, 13(1): 79–87.
El-Sayed A. S. A., El-Sayed M. T., Rady A. M., Zein N., Enan G., Shindia A., El-Hefnawy S., Sitohy M., Sitohy B., 2020. Exploiting the biosynthetic potency of taxol from fungal endophytes of conifers plants; Genome mining and metabolic manipulation. Molecules, 25(13): 3000.
Flores-Bustamante Z. R., Rivera-Orduña F. N., Martínez-Cárdenas A., Flores-Cotera L. B., 2010. Microbial paclitaxel: advances and perspectives. J Antibiot, 63(8): 460–467.
Gill H., Vasundhara M., 2019. Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World journal of microbiology & biotechnology, 35(5): 74.
Gonelimali F. D., Lin J., Miao W., Xuan J., Charles F., Chen M., Hatab S. R., 2018. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol, 910.3389/fmicb.2018.01639
Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chand D., 2019. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol Rep, 24: e00395.
Kumaran R. S., Muthumary J., Kim E.-K., Hur B.-K., 2009. Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol Bioproc E, 14(1): 76–83.
Liu Y. H., Hu X. P., Li W., Cao X. Y., Yang H. R., Lin S. T., Xu C. B., Liu S. X., Li C. F., 2016. Antimicrobial and antitumor activity and diversity of endophytic fungi from traditional Chinese medicinal plant Cephalotaxus hainanensis Li. Genetics and molecular research: GMR, 15(2).
Pérard-Viret J., Quteishat L., Alsalim R., Royer J., Dumas F., 2017. Cephalotaxus alkaloids. The Alkaloids. Chemistry and biology, 78:
–352.
Saithong P., Panthavee W., Stonsaovapak S., Congfa L., 2010. Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees. Maejo Int J Sci Technol, 4: 446–453.
Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13): 1107–1112.
Soliman S. S. M., Raizada M. N., 2018. Darkness: A crucial factor in fungal taxol production. Front Microbiol, 9.
Vu T. H. N., Pham N. S., Le P. C., Pham Q. A., Quach N. T., Nguyen V. T., Do T. T., Chu H. H., Phi Q. T., 2022. Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. Ann Microbiol, 72(1): 36.
Xue H., Xu Q., Lu C., Shen Y., 2014. Isotryptoquivaline F, a new quinazolinone derivative with anti TNF-α activity from Aspergillus sp. CM9a. Drug discoveries & therapeutics, 8(5): 208–211.
Yang H. R., Hu X. P., Jiang C. J., Qi J., Wu Y. C., Li W., Zeng Y. J., Li C. F., Liu S. X., 2015. Diversity and antimicrobial activity of endophytic fungi isolated from Cephalotaxus hainanensis Li, a well-known medicinal plant in China. Letters in applied microbiology, 61(5): 484–490.
Zhang P., Zhou P. P., Jiang C., Yu H., Yu L. J., 2008. Screening of Taxol-producing fungi based on PCR amplification from Taxus. Biotechnology letters, 30(12): 2119–2123.
Zhou X., Wang Z., Jiang K., Wei Y., Lin J., Sun X., Tang K., 2007. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Prikladnaia biokhimiia i mikrobiologiia, 43(4): 490–494