Efficacy of biosynthesizing folate, riboflavin and typical probiotic traits reveal the potential use of \(\textit{Lactobacillus plantarum}\) LCN13 as a feed additive for swine farming

Vu Thi Hanh Nguyen, Quach Ngoc Tung, Bui Thi Lien, Nguyen Huyen Trang, Nguyen Van The, Nguyen Thi Thanh Loi, Chu Hoang Ha, Phi Quyet Tien
Author affiliations

Authors

  • Vu Thi Hanh Nguyen Institute of Biotechnology, VAST, Vietnam
  • Quach Ngoc Tung Institute of Biotechnology, VAST, Vietnam
  • Bui Thi Lien Institute of Biotechnology, VAST, Vietnam
  • Nguyen Huyen Trang Institute of Biotechnology, VAST, Vietnam
  • Nguyen Van The Institute of Biotechnology, VAST, Vietnam
  • Nguyen Thi Thanh Loi Institute of Biotechnology, VAST, Vietnam
  • Chu Hoang Ha Institute of Biotechnology, VAST, Vietnam
  • Phi Quyet Tien Institution of Biotechnology, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/2615-9023/16628

Keywords:

Lactic acid bacteria, Lactobacillus plantarum, probiotics, riboflavin, swine farming.

Abstract

Lactic acid bacteria have been advocated as probiotics to replace antibiotic growth promoters, improve growth performance, and reduce cost production in swine farming. The aim of this study is to identify and evaluate the probiotic traits of strain LCN13 isolated from traditionally fermented feed for swine. Thirty-five bacterial isolates with different morphological characteristics were isolated, among which 9 isolates showed the ability to produce lactic acid and antibacterial activity against pathogenic bacteria. Among them, isolate LCN13 exhibited a strong capacity to produce lactic acid (18.5 ± 0.31 g/L), inhibited gastrointestinal pathogens such as Salmonella typhimurium ATCC 14028 (18.3 ± 1.52 mm), Escherichia coli ATCC 11105 (24.7 ± 2.14 mm), and Staphylococcus epidermidis ATCC 35984 (31.6 ± 2.93 mm), and produced 182 ng/mL folate and 233 ng/mL riboflavin as measured by LC-MS/MS after 24 hours of incubation. Based on morphological, biochemical, and 16S rRNA gene analysis, the isolate LCN13 was identified as Lactobacillus plantarum. Phenotypic analysis revealed that L. plantarum LCN13 showed remarkable resistance to 1.2% ox-bile salt, 2.0 mM H2O2, and pH 3.0. In addition, the ability to produce high levels of folate (253.6 ± 10.7 ng/mL) and riboflavin (312.0 ± 12.2 ng/mL) after 48 hours was exploited for the first time in the L. plantarum. Taken together, L. plantarum LCN13 might serve as a potential probiotic candidate for animal farming. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amin M., Adams M. B., Burke C. M., Bolch C. J. S., 2020. Isolation and screening of lactic acid bacteria associated with the gastrointestinal tracts of abalone at various life stages for probiotic candidates. Aquac. Rep., 17: 100378. https://doi.org/10.1016/j.aqrep.2020.100378

Borshchevskaya L. N., Gordeeva T. L., Kalinina A. N., Sineokii S. P., 2016. Spectrophotometric determination of lactic acid. J. Anal. Chem., 71(8): 755–758. https://doi.org/10.1134/S106193481 6080037

Corr S. C., Li Y., Riedel C. U., O'Toole P. W., Hill C., Gahan C. G., 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. U S A., 104(18): 7617–7621. https://doi.org/10.1073/pnas.0700440104

Das P., Khowala S., Biswas S., 2016. In vitro probiotic characterization of Lactobacillus casei isolated from marine samples. LWT, 73: 383–390. https://doi.org/10.1016/j.lwt.2016.06.029

Han T. H., Hong J. S., Fang L. H., Do S. H., Kim B. O., Kim Y. Y., 2017. Effects of wheat supplementation levels on growth performance, blood profiles, nutrient digestibility, and pork quality in growing-finishing pigs. Asian-Australas J. Anim. Sci., 30(8): 1150–1159. https://doi.org/10.5713/ajas.16.0838

Huang Y., Wang X., Wang J., Wu F., Sui Y., Yang L., Wang Z., 2013. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. Int. J. Dairy Sci., 96(5): 2746–2753. https://doi.org/10.3168/jds.2012-6123

Hütt P., Shchepetova J., Lõivukene K., Kullisaar T., Mikelsaar M., 2006. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol., 100(6): 1324–1332. https://doi.org/10.1111/j.1365-2672.2006. 02857.x

Hye-Ji J., Na-Kyoung L., Hyun-Dong, 2021. Lactobacillus plantarum G72 showing production of folate and short-chain fatty acids. Kor. J. Microbiol. Biotechnol., 49(1): 18–23. https://doi.org/10.48022/ mbl.2009.09010

Karami S., Roayaei M., Hamzavi H., Bahmani M., Hassanzad-Azar H., Leila M., Rafieian-Kopaei M., 2017. Isolation and identification of probiotic Lactobacillus from local dairy and evaluating their antagonistic effect on pathogens. Int. J. Pharm. Investig., 7(3): 137–141. https://doi.org/10.4103/jphi.JPHI_8_17

Kook S.-Y., Chung E.-C., Lee Y., Lee D. W., Kim S., 2019. Isolation and characterization of five novel probiotic strains from Korean infant and children faeces. PLOS ONE, 14(10): e0223913. https://doi.org/10.1371/journal.pone.0223913

La Anh N., 2015. Health-promoting microbes in traditional Vietnamese fermented foods: A review. Food Sci. Hum. Wellness., 4(4): 147–161. https://doi.org/ 10.1016/j.fshw.2015.08.004

Lin X., Xia Y., Wang G., Xiong Z., Zhang H., Lai F., Ai L., 2018. Lactobacillus plantarum AR501 alleviates the oxidative stress of D-galactose-induced aging mice liver by upregulation of Nrf2-mediated antioxidant enzyme expression. J. Food. Sci., 83(7): 1990–1998. https://doi.org/10.1111/1750-3841.14200

Meisser-Redeuil K., Bénet S., Gimenez C., Campos-Giménez E., Nelson M., 2019. Determination of folate in infant formula and adult/pediatric nutritional formula by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry: First Action 2013.13. J. AOAC. Int., 97(4): 1121–1126. https://doi.org/10.5740/jaoacint.14-055

Nguyen D. H., Seok W. J., Kim I. H., 2020. Organic acids mixture as a dietary additive for pigs—A review. Animals, 10(6): 952.

Popova T., 2017. Effect of probiotics in poultry for improving meat quality. Curr. Opin. Food Sci., 14: 72–77. https://doi.org/10.1016/j.cofs.2017.01.008

Quach N. T., Nguyen Q. H., Vu T. H. N., Le T. T. H., Ta T. T. T., Nguyen T. D., Van Doan T., Van Nguyen T., Dang T. T., Nguyen X. C., Chu H. H., Phi Q. T., 2021a. Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Braz. J. Microbiol., 52(3): 1215–1224. https://doi.org/10.1007/s42770-021-00510-6

Quach N. T., Vu T. H. N., Nguyen N. A., Nguyen V. T., Bui T. L., Ky S. C., Le T. L., Hoang H., Ngo C. C., Le T. T. M., Nguyen T. N., Chu H. H., Phi Q. T., 2021b. Phenotypic features and analysis of genes supporting probiotic action unravel underlying perspectives of Bacillus velezensis VTX9 as a potential feed additive for swine. Ann. Microbiol., 71(1): 36. https://doi.org/10.1186/s13213-021-01646-4

Sabo S. d. S., Mendes M. A., Araújo E. d. S., Muradian L. B. d. A., Makiyama E. N., LeBlanc J. G., Borelli P., Fock R. A., Knöbl T., Oliveira R. P. d. S., 2020. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci. Rep., 10(1): 7235. https://doi.org/10.1038/s41598-020-640 38-9

Salvati L. M., McClure S. C., Reddy T. M., Cellar N. A., 2016. Simultaneous determination of total vitamins B1, B2, B3, and B6 in infant formula and related nutritionals by enzymatic digestion and LC-MS/MS: single-laboratory validation, First Action 2015.14. J. AOAC. Int., 99(3): 776–785. https://doi.org/10.5740/ jaoacint.15-0315

Tambekar D., Bhutada S., 2010. An evaluation of probiotic potential of Lactobacillus sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections. Recent Res. Sci. Technol., 2: 82-88.

Tilahun B., Tesfaye A., Muleta D., Bahiru A., Terefework Z., Wessel G., 2018. Isolation and molecular identification of lactic acid bacteria using 16s rRNA genes from fermented Teff (Eragrostis tef (Zucc.)) Dough. Int. J. Food. Sci., 2018: 8510620–8510620. https://doi.org/10.1155/2018/ 8510620

Wu Z., Wu J., Cao P., Jin Y., Pan D., Zeng X., Guo Y., 2017. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J. Dairy Sci., 100(6): 4223–4229. https://doi.org/10.3168/jds.2017-12640

Xiao L., Estellé J., Kiilerich P., Ramayo-Caldas Y., Xia Z., Feng Q., Liang S., Pedersen A. Ø., Kjeldsen N. J., Liu C., Maguin E., Doré J., Pons N., Le Chatelier E., Prifti E., Li J., Jia H., Liu X., Xu X., Ehrlich S. D., Madsen L., Kristiansen K., Rogel-Gaillard C., Wang J., 2016. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol., 1(12): 16161. https://doi.org/10.1038/nmicrobiol. 2016.161

Yeh R. H., Hsieh C. W., Chen K. L., 2018. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers. Poult. Sci., 97(1): 236–246. https://doi.org/10.3382/ps/pex300

Yelnetty A., Purwadi, Ekawati Tallei T., 2020. Indigenous lactic acid bacteria isolated from spontaneously fermented goat milk as potential probiotics. Pak. J. Biol. Sci., 23(7): 883–890. https://doi.org/10.3923/pjbs.2020.883.890

Downloads

Published

30-03-2022

How to Cite

Hanh Nguyen, V. T., Ngoc Tung, Q., Thi Lien, B., Huyen Trang, N. ., Van The, N., Thanh Loi, N. T., Hoang Ha, C., & Quyet Tien, P. (2022). Efficacy of biosynthesizing folate, riboflavin and typical probiotic traits reveal the potential use of \(\textit{Lactobacillus plantarum}\) LCN13 as a feed additive for swine farming. Academia Journal of Biology, 44(1), 73–82. https://doi.org/10.15625/2615-9023/16628

Issue

Section

Articles