Elucidation of the biosynthetic pathway of B-group vitamins via genome mining of food-derived Bacillus velezensis VTX20

Quach Ngoc Tung, Vu Thi Hanh Nguyen, Le Thi Thanh Xuan, Chu Hoang Ha, Phi Quyet Tien
Author affiliations


  • Quach Ngoc Tung Institution of Biotechnology, Vietnam Academy of Science and Technology
  • Vu Thi Hanh Nguyen Graduate University of Science and Technology, VAST, Vietnam
  • Le Thi Thanh Xuan Institute of Biotechnology, VAST, Vietnam
  • Chu Hoang Ha Institute of Biotechnology, VAST, Vietnam
  • Phi Quyet Tien Institute of Biotechnology, VAST, Vietnam




Bacillus velezensis, biotin, genomic analysis, olate, probiotic traits, riboflavin


B-vitamins are micronutrients that play an important role in various cellular processes of organisms, which are only synthesized by plants, yeasts, and bacteria. Since animals and humans lack the ability to synthesize B-vitamins, supplements of vitamins from dietary and the B-vitamin producing bacteria are required. In this study, we, for the first time, shed some light on biosynthetic pathways involved in folate (vitamin B9), riboflavin (vitamin B2), and biotin (vitamin B7) production in Bacillus velezensis VTX20. The genome-wide comparison revealed that B. velezensis VTX20 shared high similarities with B. tequilensis KCTC 13622, B. subtilis 168, B. amyloliquefaciens DSM 7. Genomic analysis revealed the presence of a complete folate biosynthesis pathway in which some core components were not found in most Bacillus species. Moreover, strain VTX20 also had the metabolic pathways for riboflavin and biotin that are important probiotic traits. These results highlighted that B. velezensis VTX20 is a producer of B-vitamins, which can be applied further in the agricultural biotechnology industry.


Download data is not yet available.


Metrics Loading ...


Averianova L. A., Balabanova L. A., Son O. M., Podvolotskaya A. B., Tekutyeva L. A., 2020. Production of vitamin B2 (Riboflavin) by microorganisms: An overview. Front. Bioeng. Biotechnol., 8(1172): 102−109. https://doi.org/ 10.3389/fbioe.2020.570828 https://doi.org/ 10.3389/fbioe.2020.570828">

Bampidis V., Azimonti G., Bastos M. d. L., Christensen H., Dusemund B., Fašmon Durjava M., Kouba M., López-Alonso M., López Puente S., Marcon F., Mayo B., Pechová A., Petkova M., Ramos F., Sanz Y., Villa R. E., Woutersen R., Cocconcelli P. S., Glandorf B., Herman L., Maradona M. P., Saarela M., Anguita M., Galobart J., Holczknecht O., Manini P., Pizzo F., Tarrés-Call J., Pettenati E., 2020. Assessment of the application for renewal of the authorisation of Calsporin® (Bacillus velezensis DSM 15544) as a feed additive for weaned piglets. EFSA J., 18(11): e06283. https://doi.org/10.2903/ j.efsa.2020.6283 https://doi.org/10.2903/ j.efsa.2020.6283">

Cai X. C., Liu C. H., Wang B. T., Xue Y. R., 2017. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol. Res., 196: 89−94. https://doi.org/10.1016/j.micres.2016.12.007 https://doi.org/10.1016/j.micres.2016.12.007">

Huerta-Cepas J., Forslund K., Coelho L. P., Szklarczyk D., Jensen L. J., von Mering C., Bork P., 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol., 34(8): 2115−2122. https://doi.org/10.1093/molbev/msx148 https://doi.org/10.1093/molbev/msx148">

Khatri I., Sharma G., Subramanian S., 2019. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol., 19(1): 307-314. https://doi.org/10.1186/ s12866-019-1680-7 https://doi.org/10.1186/ s12866-019-1680-7">

Kim S. Y., Song H., Sang M. K., Weon H. Y., Song J., 2017. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. J. Biotechnol., 259: 221−227. https://doi.org/10.1016/j.jbiotec.2017.06.1206. https://doi.org/10.1016/j.jbiotec.2017.06.1206.">

Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35: 182−189. https://doi.org/ 10.1093/nar/gkm321 https://doi.org/ 10.1093/nar/gkm321">

Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A. R., Xia F., Stevens R., 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res., 42: D206–D214. https://doi.org/10.1093/nar/gkt1226 https://doi.org/10.1093/nar/gkt1226">

Panda S. H., Das S., Bal P., Panda S. K., Goli J. K., Mohanty N., 2018. Characterization of novel folate producing Lactobacillus rhamnosus and its appliance in fortification of ragi (Eleusine coracana) gruel. Food Biosci., 21: 100−106. https://doi.org/10.1016/j.fbio.2017.12.006 https://doi.org/10.1016/j.fbio.2017.12.006">

Rossi M., Amaretti A., Raimondi S., 2011. Folate production by probiotic bacteria. Nutrients, 3(1): 118−134. https://doi.org/ 10.3390/nu3010118 https://doi.org/ 10.3390/nu3010118">

Vu T. H. N., Quach N. T., Nguyen N. A., Nguyen H. T., Ngo C. C., Nguyen T. D., Ho P.-H., Hoang H., Chu H. H., Phi Q.-T., 2021. Genome mining associated with analysis of structure, antioxidant activity reveals the potential production of levan-rich exopolysaccharides by food-derived Bacillus velezensis VTX20. Appl. Sci., 11(15): 7055−7062. https://doi.org/ 10.3390/app11157055 https://doi.org/ 10.3390/app11157055">

Wang Y., Coleman-Derr D., Chen G., Gu Y. Q., 2015. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res., 43(W1): 78−84. https://doi.org/10.1093/nar/gkv487 https://doi.org/10.1093/nar/gkv487">

Wattam A. R., Davis J. J., Assaf R., Boisvert S., Brettin T., Bun C., Conrad N., Dietrich E. M., Disz T., Gabbard J. L., Gerdes S., Henry C. S., Kenyon R. W., Machi D., Mao C., Nordberg E. K., Olsen G. J., Murphy-Olson D. E., Olson R., Overbeek R., Parrello B., Pusch G. D., Shukla M., Vonstein V., Warren A., Xia F., Yoo H., Stevens R. L., 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res., 45(D1): D535-D542. https://doi.org/10.1093/nar/gkw1017 https://doi.org/10.1093/nar/gkw1017">

Ye M., Wei C., Khalid A., Hu Q., Yang R., Dai B., Cheng H., Wang Z., 2020. Effect of Bacillus velezensis to substitute in-feed antibiotics on the production, blood biochemistry and egg quality indices of laying hens. BMC Vet. Res., 16(1): 400−409. https://doi.org/10.1186/s12917-020-02570-6 https://doi.org/10.1186/s12917-020-02570-6">

Zhu T., Pan Z., Domagalski N., Koepsel R., Ataai M. M., Domach M. M., 2005. Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl. Environ. Microbiol., 71(11): 7122−7129. https://doi.org/10.1128/ AEM.71.11.7122-7129.2005 https://doi.org/10.1128/ AEM.71.11.7122-7129.2005">




How to Cite

Tung, Q. N., Nguyen, V. T. H., Xuan, L. T. T., Ha, C. H. ., & Tien, P. Q. (2021). Elucidation of the biosynthetic pathway of B-group vitamins via genome mining of food-derived </i>Bacillus velezensis</i> VTX20. Academia Journal of Biology, 43(4), 153–159. https://doi.org/10.15625/2615-9023/16624




Most read articles by the same author(s)

1 2 3 > >>