Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient

Authors

  • Luan Thanh Pham University of Science, Vietnam National University, Hanoi, Vietnam
  • Erdinc Oksum Department of Geophysical Engineering, Engineering Faculty, Süleyman Demirel University, Isparta, Turkey
  • Ozkan Kafadar Department of Computer Technologies, Kocaeli University, Kocaeli, Turkey
  • Phan Trong Trinh 1-Institute of Geological Sciences, VAST, Hanoi, Vietnam; 2-Royal Academy for Overseas Sciences, Brussels, Belgium
  • Dat Viet Nguyen University of Science, Vietnam National University, Hanoi, Vietnam
  • Quynh Thanh Vo University of Science, Vietnam National University, Hanoi, Vietnam
  • Sang Thi Le University of Science, Vietnam National University, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/17013

Keywords:

Gravity, enhanced total horizontal gradient methods, Hoang Sa islands

Abstract

The Hoang Sa islands, located in the northern part of the East Vietnam Sea, lack information on geological structural boundaries. The gravity data from the global marine gravity model were analyzed using the enhanced total horizontal gradient methods to delineate geological structures that appear as lineaments on the transformed gravity anomaly maps of the area. Before applying the techniques to gravity data of the Hoang Sa islands, their effectiveness was demonstrated by comparing them with the results from the total horizontal gradient method for a synthetic model. Applying the enhanced horizontal gradient methods shows that most of the lineaments identified in the Hoang Sa islands are trending in the WSW-ENE, NE-SW, E-W, WNW-ESE and NNW-SSE directions. These results provide a better understanding of the subsurface structural features of the islands.

Downloads

Download data is not yet available.

References

Bai Y., Williams S.E., Müller R.D, Liu Z., Hosseinpour M., 2014. Mapping crustal thickness using marine gravity data: Methods and uncertainties. Geophysics, 79(2), G27-G36.

Beiki M., 2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6), 159-174.

Braitenberg C., Wienecke S., Wang Y., 2006. Basement structures from satellite-derived gravity field: East Vietnam Sea ridge. Journal of Geophysical Research, 111(B5), B05407.

Briais A., Patriat P., Tapponnier P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the East Vietnam Sea: implications for the tertiary tectonics of Southeast Asia. J. Geophys. Res., 98 (B4), 6299e6328.

Cooper G.R.J., Cowan D.R., 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32, 1585-1591.

Cooper G.R.J., Cowan D.R., 2008. Edge enhancement of potential-field data using normalized statistics. Geophysics, 73, H1-H4.

Cordell L., Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin New Mexico. The utility of regional gravity and magnetic anomaly maps. Doi: 10.1190/1.0931830346.ch16.

Dung N.K., Thanh D.D., Vuong H.V., Cuong, D.H., Dung T.T., Dai N.B., Duong T.T., 2019. A detailed research on the structural characteristics of Hoang Sa and Truong Sa archipelagos - East Vietnam Sea based on gravity data analysis. Vietnam Journal of Marine Science and Technology, 19(3B), 163-175 (in Vietnamese).

Dung T.T., Kulinich R.G., Sang N.V., Que B.C., Dai N.B., Dung N.K., Dung T.T., Lap T.T., 2019. Improving accuracy of altimeter-derived marine gravity anomalies for geological structure research in the Vietnam South-Central continental shelf and adjacent areas. Russ. J. Pac. Geol., 13(4), 364-374.

Dung T.T., Que B.C., Phuong N.H., 2013. Cenozoic basement structure of the East Vietnam Sea and adjacent areas by modeling and interpreting gravity data. Russian Journal of Pacific Geology, 7(4), 227-236.

Echogdali F.Z., Boutaleb S., Abia E.H., Ouchchen M., Dadi B., Id-Belqas M., Abioui M., Pham L.T., Abu-Alam T., Mickus K.L., 2021. Mineral prospectivity mapping: a potential technique for sustainable mineral exploration and mining activities - a case study using the copper deposits of the Tagmout basin, Morocco. Geocarto International, 1-22. Doi: 10.1080/10106049.2021.2017006.

Eldosouky A.M., El-Qassas R.A.Y., Pham L.T., Abdelrahman K., Alhumimidi M.S., El Bahrawy A., Mickus K., Sehsah H., 2022a. Mapping Main Structures and Related Mineralization of the Arabian Shield (Saudi Arabia) Using Sharp Edge Detector of Transformed Gravity Data. Minerals, 12, 71.

Eldosouky A.M., Pham L.T., Abdelrahman K., Fnais M.S., Gomez-Ortiz D., 2022b. Mapping structural features of the Wadi Umm Dulfah area using aeromagnetic data. Journal of King Saud University - Science, 34(2), 101803.

Eldosouky A.M., Pham L.T., El-Qassas R.A.Y., Hamimi Z., Oksum E., 2021a. Lithospheric Structure of the Arabian-Nubian Shield Using Satellite Potential Field Data. In: Hamimi Z., Fowler AR., Liégeois JP., Collins A., Abdelsalam M.G., Abd EI-Wahed M. (eds) The Geology of the Arabian-Nubian Shield. Regional Geology Reviews. Springer, Cham.

Eldosouky A.M., Pham L.T., Henaish A., 2022c. High precision structural mapping using edge filters of potential field and remote sensing data: A case study from Wadi Umm Ghalqa area, South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science. Doi: 10.1016/j.ejrs.2022.03.001.

Eldosouky A.M., Pham L.T., Mohmed H., Pradhan B., 2020. A comparative study of THG, AS, TA, Theta, TDX and LTHG techniques for improving source boundaries detection of magnetic data using synthetic models: a case study from G. Um Monqul, North Eastern Desert, Egypt. J. Afr. Earth Sci., 170, 103940.

Eldosouky A.M., Pour A.B., Hamed A., Taha A., Gamal M., Mahmoud A., Pham L.T., 2021b. Utilization of Landsat-8 Imagery and Aeromagnetic Data for Deciphering Alteration Zones and Structures: Implications for Mineral Exploration in the Southeastern Desert of Egypt, Frontiers in Scientific Research and Technology, 2, 19-28.

Fedi M., Florio G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys Prospect., 49, 40-58.

Ferreira F.J.F., de SouzaJ., de Bongiolo A.B.e.S., de Castro L.G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33-J41.

Franke D., Savva D., Pubellier M., Steuer S., Mouly B., Auxietre J.L., Meresse F., Chamot-Rooke N., 2014. The final rifting evolution in the East Vietnam Sea. Marine and Petroleum Geology, 58, 704-720.

Ghomsi F.E.K., Pham L.T., Tenzer R., Esteban F.D., Vu T.V., Kamguia J., 2022b. Mapping of fracture zones and structural lineaments of the Gulf of Guinea passive margins using marine gravity data from CryoSat-2 and Jason-1 satellites. Geocarto International, 1-24. Doi: 10.1080/10106049.2022.2040602.

Ghomsi F.E.K., Ribeiro-Filho N., Baldez R., Tenzer R., Martins C.M., Chisenga C., Nguiya S., Nouayou R., 2022a. Identification of Cameroon’s geological structures through a gravity separation and using seismic crustal models. J. Afr. Earth Sci., 173, 104027.

Guo X.R., Zhao M.H., Huang H.B., Qiu X.L., Wang J., He E.Y., Zhang J.Z., 2016. Crustal structure of Xisha block and its tectonic attributes. Chinese Journal of Geophysics, 59(3), 288-300.

Hsu S.K., Coppense D., Shyu C.T., 1996. High-resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics, 61, 1947-1957.

Kafadar O., 2017. CURVGRAV-GUI: a graphical user interface to interpret gravity data using curvature technique. Earth Science Informatics, 10(4), 525-537.

Kafadar O., 2022. Applications of the Kuwahara and Gaussian filters on potential field data. Journal of Applied Geophysics, 198, 104583.

Kha T.V., Trung N.N., 2020. A novel method for computing the vertical gradients of the potential feld: application to downward continuation. Geophys. J. Int., 220(2), 1316-1329.

Kha V.T., Vuong V.H., Thanh D.D., Hung Q.D., Anh D.L., 2018. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data. Journal of Applied Geophysics, 152, 161-166.

Li F., Sun Z., Pang X., Liao J., Yang H., Xie H., Zhuo H., Zhao Z., 2019. Low‐viscosity crustal layer controls the crustal architecture and thermal distribution at hyperextended margins: Modeling insight and application to the northern East Vietnam Sea margin. Geochemistry, Geophysics, Geosystems, 20.

Li W., Li J., Wang X., 2020. Deep crustal structure imaging of gravity and magnetic anomalies in the Xisha Trough, China. Arabian Journal of Geosciences, 13(1), 32.

Liem N.V., Trinh P.T., Phong T.V., Lien V.T.H., Huong N.V., Xuyen N.Q., Thanh B.N., Hao D.V., Pham B.T., Dung N.V., Dang V.K., An V.H., 2021. Pliocene - present tectonics and strain rate in Ninh Thuan region and surrounding continental shelf. Vietnam J. Earth Sci., 43(1), 33-56.

Long H.V., Thanh N.T., Tuan V.T., Tung N.T., Anh N.L., Din D.B., Duc L.V., Dien T.N., Hiep N.H., 2021. Holocene sedimentation offshore Southeast Vietnam based on geophysical interpretation and sediment composition analysis. Vietnam J. Earth Sci., 43(3), 336-379.

Lu Y., Li W., Wu S., Cronin B.T., Lu F., Wang B., Yang T., Ma B., 2018. Morphology, architecture, and evolutionary processes of the Zhongjian Canyon between two carbonate platforms, East Vietnam Sea. Interpretation, 6(4), SO1-SO15.

Luong L.D., Hoang N., Shinjo R., B. Shakirov R., Obzhirov A., 2021. Chemical, mineralogical, and physicochemical features of surface saline muds from Southwestern sub-basin of the East Vietnam Sea: Implication for new peloids. Vietnam J. Earth Sci., 43(4), 496-508.

Melouah O., Pham L.T., 2021. Improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. J. Afr. Earth Sci., 177, 104162.

Miller H.G., Singh V., 1994. Potential field tilt a new concept for location of potential field sources. J. Appl. Geophys., 32(2-3), 213-217.

Nasuti Y., Nasuti A., Moghadas D., 2019. STDR: a novel approach for enhancing and edge detection of potential field data. Pure Appl Geophys., 176(2), 827-841.

Oksum E., Dolmaz M.N., Demir M., Pham L.T., 2021a. Evaluation of magnetic data of an emery bearing ore field by edge detection methods: Muğla, Türkiye example. Journal of Engineering Sciences and Design, 9(1), 319-329 (in Turkish).

Oksum E., Dolmaz M.N., Pham L.T., 2019. Inverting gravity anomalies over the Burdur sedimentary basin, SW Turkey. Acta Geod. Geophys., 54, 445-460.

Oksum E., Le D.V., Vu M.D., Nguyen T.H.T., Pham L.T., 2021b. A novel approach based on the fast sigmoid function for interpretation of potential field data. Bulletin of Geophysics and Oceanography, 62(3), 543-556.

Pham L.T., 2020. A comparative study on different filters for enhancing potential field source boundaries: synthetic examples and a case study from the Song Hong Trough (Vietnam). Arab J. Geosci., 13(15), 723.

Pham L.T., 2021. A high-resolution edge detector for interpreting potential field data: a case study from the Witwatersrand basin, South Africa. J. Afr. Earth Sci., 178, 104190.

Pham L.T., Do T.D., Oksum E., 2018b. A new method for edge detection in interpretation of potential feld data. Journal of Engineering Sciences and Design, 6(4), 637-642.

Pham L.T., Eldosouky A.M., Oksum E., Saada S.A., 2020a. A new high resolution filter for source edge detection of potential field data. Geocarto International, 1-18. Doi: 10.1080/10106049.2020.1849414.

Pham L.T., Kafadar O., Oksum E., Hoang-Minh T., 2021g. A comparative study on the peak detection methods used to interpret potential field data: a case study from Vietnam. Geocarto International, 1-18. Doi: 10.1080/10106049.2021.2007297.

Pham L.T., Nguyen D.A., Eldosouky A.M., Abdelrahman K., Vu T.V., Al-Otaibi N., Ibrahim E., Kharbis S., 2021d. Subsurface structural mapping from high-resolution gravity data using advanced processing methods. J. King Saud Univ. Sci., 33(5), 101488.

Pham L.T., Oksum E., Le D.V., Ferreira F.J.F., Le S.T., 2021c. Edge detection of potential field sources using the softsign function. Geocarto International, 1-14. Doi: 10.1080/10106049.2021.1882007.

Pham L.T., Oksum E., Nguyen D.V., Eldosouky A.M., 2021a. On the performance of phase-based filters for enhancing lateral boundaries of magnetic and gravity sources: a case study of the Seattle Uplift. Arab J. Geosci., 14, 129.

Pham L.T., Oksum E., Vu M.D., Vo Q.T., Le-Viet K.D., Eldosouky A.M., 2021f. An improved approach for detecting ridge locations to interpret the potential field data for more accurate structural mapping: a case study from Vredefort dome area (South Africa). J. Afr Earth Sci., 175, 104099.

Pham L.T., Oliveira S.P., Le M.H., Trinh P.T., Vu T.V., Duong V.H., Ngo T.N.T., Do T.D., Nguyen T.H., Eldosouky A.M., 2021e. Delineation of structural lineaments of the Southwest Sub-basin (East Vietnam Sea) using global marine gravity model from CryoSat-2 and Jason-1 satellites. Geocarto International, 1-18. Doi: 10.1080/10106049.2021.1981463.

Pham L.T., Vu M.D., Le S.T., 2021b. Performance Evaluation of Amplitude- and Phase Based Methods for Estimating Edges of Potential Field Sources. Iran J. Sci. Technol. Trans. Sci., 45, 1327-1339.

Pham L.T., Vu T.V., Le-Thi S., Trinh P.T., 2020b. Enhancement of potential field source boundaries using an improved logistic filter. Pure Appl. Geophys., 177, 5237-5249.

Phillips J.D., Hansen R.O., Blakely R.J., 2007. The use of curvature in potential-field interpretation. Explor Geophys., 38(2), 111-119.

Prasad K.N.D., Pham L.T., Singh A.P., 2022. Structural mapping of potential field sources using BHG filter. Geocarto International, 1-28. Doi: 10.1080/10106049.2022.2048903.

Roest W.R., Verhoef J., Pilkington M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116-125.

Saibi H., Nishijima J., Hirano T., Fujimitsu Y., Ehara S., 2008. Relation between structure and lowtemperature geothermal systems in Fukuoka city, southwestern Japan. Earth Planets Space., 60(8), 821-826.

Sandwell D.T., Muller R.D., Smith W.H.F., Garcia E., Francis R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65-67.

Smith W.H.F., Sandwell D.T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956-1962.

Tang H., Guo T, Wu K., Liu Z., Xu J., Lu B., Wang P., 2022. Reassessment of the Distribution of Mantle CO2 in the Bohai Sea, China: The Perspective from the Source and Pathway System. Acta. Geologica Sinica, 96(1), 337-347.

Tapponnier P., Peltzer G., Armijo R., 1986. On the mechanics of the collision between India and Asia, in Collision Tectonics, edited by M.P. Coward and A. C. Ries, Geol. Soc. Spec. Publ., 19, 115-157.

Tatchum C.N., Tabod T.C., Koumetio F., Manguelle-Dicoum E., 2011. A Gravity Model Study for Differentiating Vertical and Dipping Geological Contacts with Application to a Bouguer Gravity Anomali Over the Foumban Shear Zone, Cameroon. Geophysica, 47(1-2), 43-55.

Taylor B., Hayes D.E., 1983. Origin and history of the East Vietnam Sea basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands; Part 2. Geophysical Monograph, 23-56.

Trung N.N., Hong P.T., Nam B.V., Huong N.T.T., Lap T.T., 2018. Moho depth of the northern Vietnam and Gulf of Tonkin from 3D inverse interpretation of gravity anomaly data, J. Geophys. Eng., 15, 1651-1662.

Trung N.N., Huong N.T.T., 2013. Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data. Acta Geophys., 61(2), 357-384.

Trung N.N., Kha T.V., Nam B.V., Huong N.T.T., 2020. Sedimentary basement structure of the Southwest Sub-basin of the East Vietnam Sea by 3D direct gravity inversion. Mar Geophys Res., 41(1), 7.

Verduzco B., Fairhead J.D., Green C.M., MacKenzie C., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116-119.

Wijns C., Perez C., Kowalczyk P., 2005. Theta map: Edge detection in magnetic data. Geophysics, 70, 39-43.

Wu F., et al., 2021. Early development of carbonate platform (Xisha Islands) in the northern East Vietnam Sea. Marine Geology, 441, 106629.

Xu J., Ben-Avraham Z., Kelty T., Yu H.S., 2014. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions. Earth-Science Reviews, 130, 154-196.

Yang L., Ren J., McIntosh K., Pang X., Chao L., Zhao Y., 2018. The structure and evolution of deepwater basins in the distal margin of the northern East Vietnam Sea and their implications for the formation of the continental margin. Marine and Petroleum Geology, 92, 234-254.

Yu C., Xu M., Kirby J.F., Shi X., Jimenez-Diaz A., 2022. Spatial variations of the effective elastic thickness and internal load fraction in the Cascadia subduction zone. Geophys. J. Int., 229, 487-504.

Downloads

Published

2022-03-22

How to Cite

Pham Thanh, L., Oksum, E. ., Kafadar, O. ., Phan Trong, T., Nguyen Viet, D., Vo Thanh, Q., & Le Thi, S. (2022). Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient . Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/17013

Issue

Section

Articles