Contribution of advanced edge detection filters for the structural mapping of the Douala Sedimentary Basin along the Gulf of Guinea

Paul Gautier Kamto, Erdinc Oksum, Luan Thanh Pham, Joseph Kamguia
Author affiliations

Authors

  • Paul Gautier Kamto 1-Research Laboratory in Geodesy, National Institute of Cartography (NIC), Yaounde, Cameroon; 2-Department of Physics, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
  • Erdinc Oksum Department of Geophysical Engineering, Süleyman Demirel University, Isparta, Turkey
  • Luan Thanh Pham Faculty of Physics, University of Science, Vietnam National University, Hanoi, Vietnam
  • Joseph Kamguia 1-Research Laboratory in Geodesy, National Institute of Cartography (NIC), Yaounde, Cameroon; 2-Department of Physics, Faculty of Science, University of Yaounde I, Yaounde, Cameroon

DOI:

https://doi.org/10.15625/2615-9783/18410

Keywords:

Gravity data, edge detection, lineaments, Douala Sedimentary Basin

Abstract

The Douala sedimentary basin (DSB) is an area of interest because of its hydrocarbon potential. Geophysical investigations in this basin are necessary to understand its structural features better. In this study, we aimed to highlight the major lineaments of the DSB by interpreting gravity data using advanced edge detection filters based on various combinations of the horizontal and vertical gradients of the field, namely the total horizontal gradient (THG), analytical signal (AS), theta map (TM), gradient amplitude of the vertical derivative (THG_VD), the tilt angle of the total horizontal gradient amplitude (TAHG) and a novel edge detector based on the soft sign function (SF). These filters were first tested on synthetic data of a simple density model to examine their effectiveness. The results show that the edges of the model structures can be visualized with greater accuracy using the TAHG and SF filters compared to the results from the others.

Further, although the TAHG and SF filters produced good results in identifying shallow and deep structures, solutions from SF proved to be better at delineating edges. Next, we applied these edge detection filters to the residual gravity anomaly of the study area obtained after a filtering process on the complete Bouguer anomaly. The SF filter clearly and accurately identifies the major structural features. The existence and location of previously unidentified lineaments have been shown. Most of the lineaments of the DSB extracted by this study provide geometric information on the lateral distribution of depositional successions filling the basin. The structural features are mainly concentrically from the volcanic center of Mount Cameroon and show that the DSB has probably been affected by earthquakes from the permanent activities of the Cameroon volcanic line since the Cretaceous. The highlighted lineaments of the DSB obtained from this study may shed light on future studies to improve mineral/hydrocarbon exploitation and update the area's geological/tectonic information.

Downloads

Download data is not yet available.

References

Amante C., Eakins B.W., 2009. ETOPO1 arcminute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 10.

Bournas N., Baker H.A., 2001. Interpretation of magnetic anomalies using the horizontal gradient analytic signal. Annals of Geophysics, 44, 505-526.

Brownfield M.E., Charpentier R.R., 2006. Geology and total petroleum systems of the West-Central Coastal Province (7203), West Africa. US Geological Survey, 2207-B, 52.

Cella F., Fedi M., Florio G., 2009. Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting, 57(4), 543-557.

Chouhan A.K., 2020. Structural fabric over the seismically active Kachchh rift basin, India: insight from world gravity model 2012. Environmental Earth Sciences, 79(13), 1-14. https://doi:10.1007/s12665-020-09068-2.

Cooper G.R.J., Cowan D.R., 2006. Enhancing potential field data using filters based on the local phase. Computer & Geosciences, 32(10), 1585-1591.

Cordell L., Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin. In: The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists, 181-197.

Djomeni A.L., Ntamak-Nida M.J., Mvondo F.O., Kwetche P.G.F., Kissaaka J.B.I., Mooh-Enougui E., 2011. Soft-sediment deformation structures in Mid-Cretaceous to Mid-Tertiary deposits, Centre East of the Douala sub-basin, Cameroon: Preliminary results of the tectonic control. Syllabus Review, 2(3), 92-105.

Eldosouky A.M., Pham L.T., Duong V.H., Ghomsi F.E.K., Henaish A., 2022. Structural interpretation of potential field data using the enhancement techniques: a case study. Geocarto International, 37(27), 16900-16925.

Eldosouky A.M., Pham L.T., Mohammed H., Pradhan B., 2020. A comparative study of THG, AS, TA, Theta, TDX and LTHG techniques for improving source boundaries detection of magnetic data using synthetic models: a case study from G. Um

Monqul, North Eastern Desert, Egypt. Journal of African Earth Sciences, 170. https://doi.org/10.1016/j.jafrearsci.2020.103940.

Elkhateeb S.O., Abdellatif M.A.G., 2018. Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data. NRIAG Journal of Astronomy and Geophysics, 7(2), 361-376.

Fedi M., Florio G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49(1), 40-58.

Ferreira F.J.F., de Souza J., de Bongiolo A.B.eS., de Castro L.G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), 33-41.

Ghomsi F.E.K., Pham L.T., Tenzer R., Esteban F.D., Vu T.V., Kamguia J., 2022. Mapping of fracture zones and structural lineaments of the Gulf of Guinea passive margins using marine gravity data from CryoSat-2 and Jason-1 satellites. Geocarto International, 37(25), 10819-10842.

Hinze W.J., Frese R.R.B., Saad A.H., 2013. Gravity and magnetic exploration: principles, practices, and applications. New York: Cambridge University Press, 1-525.

Hsu S.K., Sibuet J.C., Shyu C.T., 1996. High- resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics, 61(2), 373-1957.

Kamto P.G., Lemotio W., Tokam A.P.K., Yap L., 2021. Combination of terrestrial and satellite gravity data for the characterization of the southwestern coastal region of cameroon: appraisal for hydrocarbon exploration. International Journal of Geophysics, 1-14. https://doi.org/10.1155/2021/5554528.

Kenfack P.L., Njike P.R.N., Ekodeck G.E., Ngueutchoua, G., 2012. Fossils Dinoflagellates from the Northern Border of the Douala Sedimentary Sub-Basin (South-West Cameroon): Age Assessment and Paleoecological Interpretations. Geosciences, 2, 117-124.

Kumar S., Pal S.K., Guha A., Sahoo S.D., Mukherjee A., 2020. New insights on Kimberlite emplacement around the Bundelkhand Craton using integrated satellite-based remote sensing, gravity and magnetic data. Geocarto International, 1-23. https://doi:10.1080/10106049.2020.1756459.

Kwetche F.P., Ntamak N.M., Nitcheu A., Etame J., Mvondo F., Mbesse C., Kissaaka J., Ngon N.G., Bourquin S., Bilong P., 2018. Facies analysis and sequence stratigraphy of missole outcrops: N'Kapa Formation of the South-Eastern edge of douala sub-basin (Cameroon). Earth Science Research, Canadian Center of Science Education, 7, 35-54. Lawrence S.R., Munday S., Bray R., 2002. Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). Lead Edge, 21(11), 1065-1176. https://doi.org/10.1190/1.1523752.

Ma G., Liu C., Li L., 2014. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. Journal of Applied Geophysics, 108, 12-18.

Mbesse C.O., Roche E., Ngos III S., 2012. La limite Paleocene-Eocene dans le bassin de Douala (Cameroun), Biostratigraphie et essai de reconstruction des paléoenvironments par l’étude des Dinoflagellé. GeoEco-Trop, 36, 83-119.

Meyers J.B., Rosendahl B.R., Groschel-Becker H., Austin J.J.A., Rona P.A., 1996. Deep penetrating MCS imaging of the rift-to drift transition, offshore Douala and North Gabon basins, West Africa. Marine and Petroleum Geology, 13, 791-835. https://doi.org/10.1016/0264-8172(96)00030-X.

Mfayakouo B.C., Njike N.P.R., Bitom D.L., 2014. Sedimentary facies and depositional environments of Cenozoïc sedimentary Formations cropping out at the central part of the Douala basin. American Journal Geosciences, 4(1), 8-23. https://doi.org/10.3844/ajgs.2014.8.23.

Morley C.K., 1995. Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society, London, Special Publications, 80(1), 1-32.

Nasuti Y., Nasuti A., 2018. NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1), 36-45.

Nasuti Y., Nasuti A., Moghadas D., 2019. STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176(2), 827-841.

Nguene F.R., Tamfu S., Loule J.P., Ngassa C., 1992. Paléoenvironnements of the Douala and Kribi/Campo Subbasins in Cameroon, West African. Geologie Africaine : Colloque de Geologie Africaine, Libreville, Recueil des Communications, 6-8 May 1991, 129-139.

Oksum E., Dolmaz M.N., Pham L.T., 2019. Inverting gravity anomalies over the Burdur sedimentary basin, SW Turkey. Acta Geodaetica et Geophysica, 54, 445-460.

Oksum E., Le D.V., Vu M.D., Nguyen T.H.T., Pham L.T., 2021. A novel approach based on the fast sigmoid function for interpretation of potential field data. Bull. Geophys. Oceanogr, 62(3), 543-556.

Pal S.K., Vaish J., Kumar S., Priyam P., Bharti A.K., Kumar R., 2017. Downward continuation and Tilt Derivative of magnetic data for delineation of concealed coal fire in East Basuria Colliery, Jharia coal field, India. Journal of Earth System Science, 126(4), 1-17. https://doi.org/10.1007/s12040-017-0826-y.

Pauken R.J., Thompson J.M., Schuman J.R., Cooke J.C., 1991. Geology of the Douala Basin, offshore Cameroon. American Association of Petroleum Geologists Bulletin (United States), 75, 651-652.

Pham L.T., Do T.D., Oksum E., Le S.T., 2019. Estimation of Curie point depths in the Southern Vietnam continental shelf using magnetic data. Vietnam J. Earth Sci., 41(3), 216-228. https://doi.org/10.15625/0866-7187/41/3/13830.

Pham L.T., Oksum E., Kafadar O., Trinh P.T., Nguyen D.V., Vo Q.T., Le S.T., Do T.D., 2022. Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient. Vietnam J. Earth Sci., 44(3), 395-409. https://doi.org/10.15625/2615-9783/17013.

Pham L.T., Prasad K.N.D., 2023. Analysis of gravity data for extracting structural features of the northern region of the Central Indian Ridge. Vietnam J. Earth Sci.. https://doi.org/10.15625/2615-9783/18206.

Pham L.T., Le-Huy M., Oksum E., Do T.D., 2018. Determination of maximum tilt angle from analytic signal amplitude of magnetic data by the curvature-based method. Vietnam J. Earth Sci., 40(4), 354-366. https://doi.org/10.15625/0866-7187/40/4/13106.

Pham L.T., Oksum E., Le D.V., Ferreira F.J., Le S.T., 2021. Edge detection of potential field sources using the softsign function. Geocarto International, 37(14), 4255-4268.

Rao D.B., Prakash M.J., Ramesh B.N., 1990. 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38, 411-422.

Roest W.R.J., Verhoef J., Pilkington M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.

Tatchum N.C., Tabod C., Koumetio F., Manguelle- Dicoum E., 2011. A gravity model study for differentiating vertical and dipping geological contacts with application to a Bouguer gravity anomaly over the Foumban shear zone, Cameroon. Geophysica, 47, 43-55.

Ting-Jie Y.A.N., Yan-Gang W.U., Yuan Y.U.A.N., Ling-Na C.H.E.N., 2016. Edge detection of potential field data using an enhanced analytic signal tilt angle. Chinese Journal of Geophysics, 59(4), 341-349.

Van L.A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments an overview. Geologos, 15(1), 3-55.

Wijns C., Perez C., Kowalczyk P., 2005. Theta map: edge detection in magnetic data. Geophysics, 70(4), 39-43.

Yuan Y., Yu Q., 2015. Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods. Pure and Applied Geophysics, 172(2), 461-472.

Zareie V., Moghadam R.H., 2019. The application of theta method to potential field gradient tensor data for edge detection of complex geological structures. Pure and Applied Geophysics, 176(11), 4983-5001.

Zhang X., Yu P., Tang R., Xiang Y., Zhao C.J., 2015. Edge enhancement of potential field data using an enhanced tilt angle. Exploration Geophysics, 46(3), 276-283.

Zingerle P., Pail R., Gruber T., Oikonomidou X., 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1-12.

Downloads

Published

08-06-2023

How to Cite

Gautier Kamto, P., Oksum, E., Pham Luan, T., & Kamguia, J. (2023). Contribution of advanced edge detection filters for the structural mapping of the Douala Sedimentary Basin along the Gulf of Guinea. Vietnam Journal of Earth Sciences, 45(3), 287–302. https://doi.org/10.15625/2615-9783/18410

Issue

Section

Articles