A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall

Huy Hoang-Cong, Thanh Ngo-Duc, Tuyet Nguyen-Thi, Long Trinh-Tuan, Jing Xiang Chung, Fredolin Tangang, Santisirisomboon Jerasorn , Tan Phan-Van
Author affiliations

Authors

  • Huy Hoang-Cong Northern Center for Environmental Monitoring (NCEM), Vietnam Environment Administration (VEA), Ministry of Natural Resources and Environment (MONRE), Hanoi, Vietnam
  • Thanh Ngo-Duc University of Science and Technology of Hanoi (USTH), VAST, Hanoi, Vietnam
  • Tuyet Nguyen-Thi Vietnam Institute for Development Strategies, Ministry of Planning and Investment, Hanoi, Vietnam
  • Long Trinh-Tuan Center for Environmental Fluid Dynamics, VNU University of Science, Hanoi, Vietnam
  • Jing Xiang Chung Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
  • Fredolin Tangang Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Santisirisomboon Jerasorn Ramkhamhaeng University Center of Regional Climate Change and Renewable Energy (RU-CORE), Ramkhamhaeng University, Bangkok, Thailand
  • Tan Phan-Van Faculty of Hydro-Meteorology and Oceanography, VNU University of Science, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/16942

Keywords:

Dynamical downscaling, regional climate model, rainfall, climate change, Vietnam, Lower Mekong Basin

Abstract

This study first evaluates the performance of three model experiments in representing rainfall over part of Vietnam and the Lower Mekong Basin for the historical period 1986-2005. The three experiments include the Coupled Model Intercomparison Project Phase 5 (CMIP5) EC-EARTH Global Climate Model (GCM) and two downscaling runs based on a regional climate model at 25km resolution with the GCM forcing (RCM-25km) and at 5km resolution with the RCM-25km forcing (RCM-5km). Verifications against observations show that the experiments generally capture the spatial distribution of climatological rainfall. While the GCM well represents the observed average rainfall cycles, its coarse resolution limits its capability in reproducing extreme rainfall values. The downscaling experiments do not clearly show their advantage in simulating average rainfall but exhibit significant added values when representing extreme rainfall in the study region. The RCM-5km does not outperform its driving 25km experiment in representing the mean and extreme rainfall values, suggesting that having a better resolution may not compensate for having a good model configuration with appropriate physical schemes. Analysis of climate projection for the far future period 2080-2099 under two representative concentration pathways (RCP) scenarios, RCP4.5 and RCP8.5, reveals that the downscaling experiments can modify the change direction of future rainfall obtained with the GCM. While the EC-EARTH GCM generally projects wetter tendencies of up to 50%, the downscaling experiments project a general decrease of down to -50% under both scenarios over the study domain. Regarding extreme rainfall, the annual maximum 1-day rainfall amount (RX1day) is projected to increase for the three experiments. The simple daily intensity index (SDII) future changes follow those of the annual rainfall values.

Downloads

Download data is not yet available.

References

Aldrian E., Dümenil-Gates L., Jacob D., Podzun R., Gunawan D., 2004. Long-term simulation of Indonesian rainfall with the MPI regional model. Climate Dynamics, 22(8), 795-814. https://doi.org/10.1007/s00382-004-0418-9.

Arias P.A., et al., 2021. Technical Summary. In: Climate Change 2021: The Physical Science Basis. Retrieved on September 2021 from https://www.ipcc.ch/report/ar6/wg1/.

Bretherton C.S., Peters M.E., Back L.E., 2004. Relation- ships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17(7), 1517-1528. https://doi.org/10.1175/1520-0442.

Chotamonsak C., Salathé E.P., Kreasuwan J., Chantara S., Siriwitayakorn K., 2011. Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmospheric Science Letters, 12(2), 213-219. https://doi.org/10.1002/asl.313.

Cruz F.T., Narisma G.T., Dado J.B., Singhruck P., Tangang F., Linarka U.A., Wati T., Juneng L., Phan-Van T., Ngo-Duc T., Santisirisomboon J., Gunawan D., Aldrian, E., 2017. Sensitivity of temperature to physical parameterization schemes of RegCM4 over the CORDEX-Southeast Asia region. International Journal of Climatology, 37(15), 5139-5153. https://doi.org/10.1002/ joc.5151.

Cubasch U., Wuebbles D., Chen D., Facchini M.C., Frame D., Mahowald N., Winther J.-G., 2013. Introduction, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds)]. Cambridge University Press, Cambridge, United Kingdom and USA, 119-158.

Daniel S.W., 2006. Statistical methods in the atmospheric sciences, International Geophysics Series, Elsevier, 704pp.

Dickinson R.E., Henderson-Sellers A., Kennedy P.J., 1993. Biosphere- Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Technical Note, National Center for Atmospheric Research, Boulder, CO, 72pp.

Emanuel K.A., Zivkovic-Rothman M., 1999. Development and evaluation of a convection scheme for use in climate models. Journal of the Atmospheric Sciences, 56(11), 1766-1782. https://doi.org/10.1175/1520-0469.

Emori S., Brown S.J., 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17). https://doi.org/10.1029/2005GL023272.

Francisco R.V., Argete J., Giorgi F., Pal J., Bi X., Gutowski W.J., 2006. Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes. Theoretical and Applied Climatology, 86(1), 215-227. https://doi.org/10.1007/s00704-005-0216-2.

Funk C., et al., 2015. The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. https://doi.org/10.1038/sdata.2015.66.

Germanwatch, 2021. Global Climate Risk Index 2021: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000-2019. Briefing paper, 50pp. Retrieved on September 2021 from https://germanwatch.org.

Giorgi F., Coppola E., Solmon F., Mariotti L., Sylla M., Bi X., Elguindi N., Diro G., Nair V., Giuliani G., Turuncoglu U., Cozzini S., Guttler I., OíBrien T., Tawfik A., Shalaby A., Zakey A., Steiner A., Stordal F., Sloan L., Brankovic C., 2012. RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7-29. https://doi.org/10.3354/cr01018.

Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J-H., 2021. Atlas. In: Climate Change 2021, The Physical Science Basis. Retrieved on September 2021 from http://interactive-atlas.ipcc.ch/.

Hazeleger W., et al., 2010. EC-Earth: a seamless earth-system prediction approach in action. Bulletin of the American Meteorological Society, 91, 1357-1363. https://doi.org/10.1175/2010BAMS2877.1.

Hentgen L., Ban N., Kröner N., Leutwyler D., Schär C. 2019. Clouds in convection-resolving climate simulations over Europe. Journal of Geophysical Research: Atmospheres, 124, 3849-3870. https://doi.org/10.1029/2018JD030150.

Hijioka Y., Lin E., Pereira J.J., Corlett R.T., Cui X., Insarov G.E., Lasco R.D., Lindgren E., Surjan A., 2014. Asia. In Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Gima B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., White L.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1327-1370.

Juneng L., Tangang F., Chung J.X., Ngai S.T., Tay T.W., Narisma G., Cruz F., Phan-Van T., Ngo-Duc T., Santisirisomboon J., Singhruck P., Gunawan D., Aldrian E., 2016. Sensitivity of the Southeast Asia rainfall simulations to cumulus and Air-Sea flux parameterizations in RegCM4. Climate Research, 69, 59-77. https://doi.org/10.3354/cr01386.

Kain J.S., Fritsch J.M., 1993. Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme. In: Emanuel K.A., Raymond D.J. (eds) The Representation of Cumulus Convection in Numerical Models. Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-13-3_16.

Kendon E.J., Prein A.F., Senior C.A., Stirling A., 2021. Challenges and outlook for convection-permitting climate modelling Philosophical Transactions of the Royal Society A, 379(2195), 20190547. http://doi.org/10.1098/rsta.2019.0547.

Kieu-Thi X., Vu-Thanh H., Nguyen-Minh T., Le D., Nguyen-Manh L., Takayabu I., Sasaki H., Kitoh A., 2016. Rainfall and Tropical Cyclone Activity over Viet Nam Simulated and Projected by the Non-Hydrostatic Regional Climate Model - NHRCM, Journal of the Meteorological Society of Japan. Ser. II, 94A, 135-150. https://doi.org/10.2151/jmsj.2015-057.

Kundzewicz ZW., Kanae S., Seneviratne S.I., Handmer J., Nicholls N., Peduzzi P., Mechler R., Bouwer L.M., Arnell N., Mach K., Muir-Wood R., Brakenridge G.R., Kron W., Benito G., Honda Y., Takahashi K., Sherstyukov B. 2013. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1-28. https://doi.org/ 10.1080/02626667.2013.857411.

Loi D.T., Khac D.V., Hung D.N., Dong N.T., Vinh D.X., Weber C., 2021. Monitoring of coastline change using Sentinel-2A and Landsat 8 data, a case study of Cam Pha city - Quang Ninh province. Vietnam Journal of Earth Sciences, 43(3), 249-272. https://doi.org/10.15625/2615-9783/16066.

Manomaiphiboon K., Octaviani M., Torsri K., Towprayoon S., 2013. Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios, Climate Research, 58(2), 97-115. https://doi.org/10.3354/cr01188.

MRC, 2009. Adaptation to Climate Change in the Countries of the Lower Mekong Basin: Regional Synthesis Report. MRC Technical Paper No. 24, Mekong River Commission (MRC), Vientiane, Laos, 89pp.

Muller C.J., Back L.E., O’Gorman P.A., Emanuel K.A., 2009. A model for the relationship between tropical precipitation and column water vapor. Geophysical Research Letters, 36(16). https://doi.org/10.1029/2009GL039667.

Muller C.J., O’Gorman P.A., Back L.E., 2011. Intensification of precipitation extremes with warming in a cloud- resolving model. Journal of Climate, 24(11), 2784-2800. https://doi.org/10.1175/2011JCLI3876.1.

Nakicenovic N., et al., 2000. Special report on emissions scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Navale A., Singha C., 2020. Topographic sensitivity of WRF-simulated rainfall patterns over the North West Himalayan region. Atmospheric Research 242, 105003. https://doi.org/10.1016/j.atmosres.2020.105003.

Ngo-Duc T., Kieu C., Thatcher M., Nguyen-Le D., Phan-Van T., 2014. Climate projections for Viet Nam based on regional climate models, Climate Research, 60(3), 199-213. https://doi.org/10.3354/cr01234.

Ngo-Duc T., Matsumoto J., Kamimera H., Bui H.-H., 2013. Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the Vu Gia-Thu Bon River Basin in Central Vietnam using an artificial neural network. Hydrological Research Letters, 7(4), 85-90. https://doi.org/10.3178/hrl.7.85.

Ngo-Duc T., et al., 2017. Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. International Journal of Climatology, 37(3), 1634-1647. https://doi.org/10. 1002/joc.4803.

Nguyen Dinh D., Lai Vinh C., 2021. 30-year changes of natural forests under human activities in the Indochina peninsula - case studies in Cambodia, Laos and Vietnam. Vietnam Journal of Earth Sciences, 43(3), 285-300. https://doi.org/10.15625/2615-9783/16196.

Nguyen-Le D., Matsumoto J., Ngo-Duc T., 2015. Onset of the rainy seasons in the eastern Indochina Peninsula. Journal of Climate, 28(14), 5645-5666. https://doi.org/10.1175/JCLI-D-14-00373.1.

Nguyen-Thi T., Ngo-Duc T., Phan-Van T., 2019. Performance of SEACLID/CORDEX-SEA multi-model experiments in simulating temperature and rainfall in Vietnam. Vietnam Journal of Earth Sciences, 41(4), 374-387. https://doi.org/10.15625/0866-7187/41/4/14259.

Oleson K., et al., 2013. Technical description of version 4.5 of the Community Land Model (CLM) (No. NCAR/TN-503+STR). https://doi.org/10.5065/D6RR1W7M.

Phan V.T., Ngo-Duc T., Ho T.M.H., 2009. Seasonal and interannual variations of surface climate elements over Viet Nam. Climate Research, 40(1), 49-60. https://doi.org/10.3354/cr00824.

Raymond D. J., 2000. Thermodynamic control of tropical rainfall. Quarterly Journal of the Royal Meteorological Society, 126(564), 889-898. https://doi.org/10.1002/qj.49712656406.

Supari S., et al., 2020. Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations, Environmental Research, 184, 109350. https://doi.org/10.1016/j.envres.2020.109350.

Tangang F., et al., 2020. Projected Future Changes in Rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations. Climate Dynamics, 55(5), 1247-1267, https://doi.org/10.1007/s00382-020-05322-2.

Tangang F., et al., 2019. Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia, International Journal of Climatology, 39(14), 5413-5436. https://doi.org/10.1002/joc.6163.

Tangang F., et al., 2018. Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C, APN Science Bulletin, 8(1). https://doi.org/10.30852/sb.2018.436.

Taylor K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192, https://doi.org/10.1029/2000JD900719.

Trinh-Tuan L., Matsumoto J., Ngo-Duc T., Nodzu M.I., Inoue T., 2019. Evaluation of Satellite Precipitation Products over Central Vietnam. Progress in Earth and Planetary Science, 6(1), 1-16. https://doi.org/10.1186/s40645-019-0297-7.

Trinh-Tuan L., et al., 2019. Application of Quantile Mapping Bias Correction for Mid-Future Precipitation Projections over Viet Nam, SOLA, 15, 1-6. https://doi.org/10.2151/sola.2019-001.

van Vuuren D.P., Edmonds J., Kainuma M., et al., 2011. The representative concentration pathways: an overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z.

World Bank, 2012. Thai Flood 2011: Rapid Assessment for Resilient Recovery and Reconstruction Planning. Retrieved on September 2021, from: http://www.gfdrr.org/gfdrr/sites/gfdrr.org/files/publication/Thai_Flood_2011_2.pdf.

Downloads

Published

22-02-2022

How to Cite

Hoang-Cong, H. ., Ngo-Duc, T., Nguyen-Thi, T., Trinh-Tuan, L., Jing Xiang , C., Tangang, F. ., Jerasorn , S., & Phan-Van, T. (2022). A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam Journal of Earth Sciences, 44(1), 92–108. https://doi.org/10.15625/2615-9783/16942