Assessing aerosol changes over Delhi using satellite and ground measurement data: Insights from a COVID-19 lockdown period

Huong Nguyen-Thuy, Thanh Ngo-Duc, An Dam-Duy
Author affiliations

Authors

  • Huong Nguyen-Thuy Nara Women's University, Nara, Japan
  • Thanh Ngo-Duc University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam
  • An Dam-Duy Center for Calibration of Environmental and Chemical Equipment, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/21418

Keywords:

Aerosol, air pollution, CALIPSO, MODIS, Delhi, COVID-19

Abstract

The tragic COVID-19 pandemic, while presenting numerous devastating consequences, has inadvertently provided a unique opportunity for studying air pollution. In this study, we specifically evaluate the spatiotemporal changes in aerosols before and during the COVID-19 lockdown from March to May 2020 over Northwest India, with a particular focus on two subregions in the vicinity of Delhi: Delhi-West and Delhi-East. The assessment was conducted using aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) mission, aerosol profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission, and ground-based measurements of PM2.5 and PM10. Results demonstrated evident reductions in surface particulate matter and AOD during the lockdown. Approximately 40% of the contribution to the total AOD was from aerosols below 1 km. Different rates of change in AOD were observed for the two subregions across different lockdown phases, attributed to differences in emission sources: Delhi-East is more influenced by residential emissions, while Delhi-West is more affected by natural sources. The surface concentration and variabilities of PM2.5 and PM10 confirmed the differences between the two subregions, emphasizing the role of anthropogenic activities in PM2.5 emissions over the study area.

Downloads

Download data is not yet available.

References

Babu S.S., Manoj M.R., Moorthy K.K., Gogoi M.M., Nair V.S., Kompalli S.K., Satheesh S.K., Niranjan K., Ramagopal K., Bhuyan P.K., Singh D., 2013. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. Journal of Geophysical Research: Atmospheres, 11, 794.

Balk D., Montgomery M.R., Engin H., Lin N., Major E., Jones B., 2019. Urbanization in India: Population and Urban Classification Grids for 2011. Data (MDPI), 4, 35.

Bamola S., Goswami G., Dewan S., Goyal I., Agarwal M., Dhir A., Lakhani A., 2024. Characterising temporal variability of PM2.5/PM10 ratio and its correlation with meteorological variables at a sub-urban site in the Taj City. Urban Climate, 53, 101763.

Brasseur G., Orlando J.J., Tyndall G.S. (Eds.), 1999. Atmospheric chemistry and global change. New York: Oxford University Press.

Chandra S., Dwivedi A.K., Kumar M., 2014. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India. Journal of Earth System Science, 123, 1233–1240.

Central Pollution Control Board (CPCB), Delhi, 2020. Impact of lockdown (March 25 to April 15) on air quality. Ministry of Environment, Forest and Climate Change, Govt of India.

David L.M., et al., 2018. Aerosol Optical Depth Over India. Journal of Geophysical Research: Atmospheres, 123, 3688–3703.

Dey S., Tripathi S.N., Singh R.P., Holben B.N., 2004. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. Journal of Geophysical Research: Atmospheres, 109, D20211.

Dey S., Tripathi S.N., Mishra S.K., 2008. Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India. Geophysical Research Letter, 35, L03808.

Dhaka S.K., Chetna Kumar V., Panwar V., Dimri A.P., Singh N., Patra P.K., Matsumi Y., Takigawa M., Nakayama T., Yamaji K., Kajino M., Misra P., Hayashida S., 2020. PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline pollution and meteorology. Scientific Reports, 10, 13442.

Dimitrova A., Bora J.K., 2020. Monsoon weather and early childhood health in India. PLoS ONE, 15(4), e0231479.

Esri India Technologies Private Limited., 2023. India: State boundary 2021 and India: District boundary 2021. https://policymaps.esri.in/datasets (last accessed March 21, 2024).

Eeftens M., et al., 2012. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PM coarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmospheric Environment, 62, 303–317.

Fan H., Zhao C., Yang Y., Yang X., 2021. Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Frontiers in Environmental Science, 9, 692440.

Fujimori S., Hasegawa T., Ito A., Takahashi K., Masui T., 2018. Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Scientific Data, 5, 180210.

Gautam R., Hsu N.C., Lau K.M., Kafatos M., 2009. Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Annales Geophysicae, 9, 3691–3703.

Gautam R., Hsu N.C., Lau K.M., 2010. Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. Journal of Geophysical Research: Atmospheres, 115, D17208.

Gouda K.C., Gogeri I., ThippaReddy A.S., 2022. Assessment of Aerosol Optical Depth over Indian Subcontinent during COVID-19 lockdown (March-May 2020). Environmental Monitoring and Assessment, 194, 195.

Guttikunda S.K., Mohan D., 2014. Re-fueling road transport for better air quality in India. Energy Policy, 68, 556–561.

Habib A., Chen B., Khalid B., Tan S., Che H., Mahmood T., Butt M., 2019. Estimation and inter-comparison of dust aerosols based on MODIS, MISR and AERONET retrievals over Asian desert regions. Journal of Environmental Sciences, 76, 154–166.

Hamed K.H., 2008. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349, 350–363.

Hayes C. R., Coakley Jr. J. A.,Tahnk W. R., 2010. Relationships among properties of marine stratocumulus derived from collocated CALIPSO and MODIS observations. Journal of Geophysical Research: Atmospheres, 115 (D4).

Jethva H., Chand D., Torres O., Gupta P., Lyapustin A., Patadia F., 2018. Agricultural burning and air quality over northern India: a synergistic analysis using NASA's A-train satellite data and ground measurements. Aerosol and Air Quality Research, 18, 1756–1773.

Kanawade V.P., Srivastava A.K., Ram K., Asmi E., Vakkari V., Soni V.K., Varaprasad V., Sarangi C., 2020. What caused severe air pollution episode of November 2016 in New Delhi?. Atmospheric Environment, 222, 117125.

Kaur-Sidhu M., Ravindra K., Mor S., John S., 2020. Emission factors and global warming potential of various solid biomass fuel-cook stove combinations. Atmospheric Pollution Research, 11(2), 252–260.

Kendall M.G., 1938. A New Measure of Rank Correlation. Biometrika, 30(1/2), 81–93.

Khodeir M., Shamy M., Alghamdi M., Zhong M., Sun H., Costa M., Chen L.C., Maciejcczyk P.M., 2012. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 3, 331–340.

Kim M.H., Omar A.H., Tackett J.L., Vaughan M.A., Winker D.M., Trepte C.R., Hu Y., Liu Z., Poole L.R., Pitts M.C., Kar J., Magill B.E., 2018. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmospheric Measurement Technique, 11, 6107–6135.

Kliengchuay W., Mingkhwan R., Kiangkoo N., Kongpran J., Aung H.W., Tantrakarnapa K., 2024. Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14, 7800.

Kumar M., Parmar K.S., Kumar D.B., Mhawish A., Broday D.M., Mall R.K, Banerjee T., 2018. Long-term aerosol climatology over Indo-Gangetic Plain: trend, prediction and potential source fields. Atmospheric Environment, 180, 37–50.

Lau K.M., Kim K.M., 2006. Observational relationship betweenAerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33, L21810.

Lau K.M., Kim M.K., Kim K.M., 2006. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dynamics, 26, 855–864.

Lelieveld J., Evans J.S., Fnais M., Giannadaki D., Pozzer A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367-371.

Levy R.C., Mattoo S., Munchak L.A., Remer L.A., Sayer A.M., Patadia F., Hsu N.C., 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6, 2898–3034.

Levy R.C., Mattoo S., Sawyer V., Shi Y., Colarco P.R., Lyapustin A.I., Wang Y., Remer L.A., 2018. Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmospheric Measurement Techniques, 11, 4073–4092.

Liou K.N., 2002. An Introduction to Atmospheric Radiation. Elsevier, 84, 1–583.

Liu T., Marlier M.E., DeFries R.S., Westervelt D.M., Xia K.R., Fiore A.M., Mickley L.J., Cusworth D.H., Milly G., 2018. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172(83–92), 1352–2310.

Liu Z., Omar A., Vaughan M., Hair J., Kittaka, C., Hu Y., Powell K., Trepte C., Winker D., Hostetler C., Ferrare R., Pierce R., 2008. CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. Journal of Geophysical Research Atmospheres, 113 (D7).

Liu Z., Vaughan M., Winker D., Kittaka C., Getwewich B., Kuehn R., Omar A., Powell K., Trepte C., Hostetler C., 2009. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. Journal of Atmospheric and Oceanic Technology, 26, 1198–1213.

Mahato S., Pal S., Ghosh K.G., 2020. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Science of The Total Environment, 730, 139086.

Mann H.B., 1945. Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259.

Mehta M., Khushboo R., Raj R., Singh N., 2021. Spaceborne observations of aerosol vertical distribution over Indian mainland (2009–2018). Atmospheric Environment, 244, 117902.

Ministry of Home Affairs, 2020. Guidelines on the measure to be taken by Ministers/Departments of Government of India, State/Union Territory Governments and State/Union Territory Authorities for Containment of COVID-19 epidemic in the country.

Mishra A.K., Shibata T., 2012. Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by space-borne lidar CALIOP. Atmospheric Environment, 46, 365–375.

Misra P., Takigawa M., Khatri P., Dhaka S.K., Dimri A.P., Yamaji K., Kajino M., Takeuchi W., Imasu R., Nitta K., Patra P.K., Hayashida S., 2021. Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Scientific Reports, 11, 9800.

Nakoudi K., Giannakaki, E., Dandou, A., Tombrou, M., Komppula, M., 2019. Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. Atmospheric Measurement Techniques, 12(5), 2595–2610.

Nigam S., Bollasina M., 2010. "Elevated heat pump" hypothesis for the aerosol-monsoon hydroclimate link: "Grounded" in observations?. Journal of Geophysical Research, 115, D16201.

Nirwan N., Siddiqui A., Kannemadugu H.B.S., Chauhan Pr., Singh R.P., 2024. Determining hotspots of gaseous criteria air pollutants in Delhi airshed and its association with stubble burning. Scientific Reports, 14, 986.

Pandey S.K., Vinoj V., 2021. Surprising Changes in Aerosol Loading over India amid COVID-19 Lockdown. Aerosol and Air Quality Research, 21(3), 200466.

Pandithurai G., Dipu S., Dani K.K., Tiwari S., Bisht D.S., Devara P.C.S., Pinker R.T., 2008. Aerosol radiative forcing during dust events over New Delhi, India. Journal of Geophysical Research: Atmospheres, 113, D13209.

Platnick S., et al., 2015. MODIS Atmosphere L3 Daily Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA.

Prijith S.S., Srinivasulu J., Sesha Sai M.V.R., 2021. Dominance of natural aerosols over India in pre-monsoon: inferences from the lockdown effects. Current Science, 120(2), 25.

Rani S., Kumar R., 2022. Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1. Spatial Information Research, 30, 417–426.

Ravindra K., Singh T., Mor S., Singh V., Mandal T.K., Bhatti M.S., Gahlawat S.K., Dhankhar R., Beig G., 2019. Real-time monitoring of air pollutants in seven cities of North India during crop residue burning and their relationship with meteorology and transboundary movement of air. Science of The Total Environment, 690, 717–729.

Salerno F., Guyennon N., Yang K., Shaw T.E., Lin C., Colombo N., Romano E., Gruber S., Bolch T., Alessandri A., Cristofanelli P., Putero D., Diolaiuti G., Tartari G., Verza G., Thakuri S., Balsamo G., Miles E.S., Pellicciotti F., 2023. Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience, 16(12), 1120–1127.

Sathe Y., Gupta P., Bawase M., Lamsal L., Patadia F., Thipse S., 2021. Surface and satellite observations of air pollution in India during COVID-19 lockdown: Implication to air quality. Sustainable Cities and Society, 66, 102688.

Sathyanadh A., Prabhakaran T., Patil C., Karipot A., 2017. Planetary boundary layer height over the Indian subcontinent: Variability and controls with respect to monsoon. Atmospheric Research, 195, 44–61.

Sharma V., Ghosh S., Shahnawaz S., Rai P.K., Singh S., 2022. Covid-19 lockdown effect on aerosol optical depth in Delhi National Capital Region, India. Forum Geografic, XXI, 146–157.

Sayer A.M., Hsu N.C., Bettenhausen C., Jeong M.J., 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data. Journal of Geophysical Research: Atmospheres, 118(14), 7864–7872.

Sayer A.M., Munchak L.A., Hsu N.C., Levy R.C., Bettenhausen C., Jeong M.J., 2014. MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and "merged" data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119, 13965–13989.

Sharma R., Joshi P.K., 2016. Mapping environmental impacts of rapid urbanization in the national capital region of India using remote sensing inputs. Urban Climate, 15, 70–82.

Shiraiwa M., Ammann M., Koop T., Pöschl U., 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences, 108(27), 11003–11008.

Singh S., Nath S., Kohli R., Singh R., 2005. Aerosol over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophysical Research Letters, 32, L13808.

Singh V., Biswal A., Kesarkar A.P., Mor S., Ravindra K., 2020a. High resolution vehicular PM10 emissions over megacity Delhi: relative contributions of exhaust and non-exhaust sources. Science of The Total Environment, 699, 134273.

Singh V., Singh S., Biswal A., Kesarkar A.P., Mor S., Ravindra K., 2020b. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution, 266, 115368.

Singh V., Singh S., Biswal A., 2021. Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Science of Total Environment, 750, 141461.

Schnell J.L., Naik V., Horowitz L.W., Paulot F., Mao J., Ginoux P., Zhao M., Ram K., 2018. Exploring the relationship between surface PM2.5 and meteorology in Northern India. Atmospheric Chemistry and Physics, 18, 10157–10175.

Soni P., 2021. Effects of COVID-19 lockdown phases in India: an atmospheric perspective. Environment, Development and Sustainability, 23(8), 12044–12055.

Srivastava A.K., Bhoyar P.D., Kanawade V.P., Devara P.C.S., Thomas A., Soni V.K., 2021. Improved air quality during COVID-19 at an urban megacity over the Indo-Gangetic-Basin: From stringent to relaxed lockdown phases. Urban Climate, 36, 100791.

Sugimoto N., Matsui I., Shimizu A., Uno I., Asai K., Endoh T., Nakajima T., 2002. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai. Geophysical Research Letters, 29(19), 1901.

Sugimoto N., Shimizu A., Matsui I., Nishikawa M., 2016. A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to- PM10 ratios. Particuology, 28, 114–120.

Tariq S., Qayyum F., Ul-Haq Z., Mehmood U., 2022. Long-term spatiotemporal trends in aerosol optical depth and its relationship with enhanced vegetation index and meteorological parameters over South Asia. Environmental Science and Pollution Research, 29(20), 30638–30655.

Tripathi S.N., Pattnaik A., Dey S., 2007. Aerosol indirect effect over Indo- Gangetic plain. Atmospheric Environment, 41, 7037–7047.

Venkat-Ratnam M., Prasad P., Akhil Raj S.T., Hoteit I., 2021. Effect of Lockdown due to COVID-19 on the Aerosol and Trace Gases Spatial Distribution over India and Adjoining Regions. Aerosol and Air Quality Research, 21(2), 200397.

Vu-Thanh H., Ngo-Duc T., Phan-Van T., 2014. Evolution of meteorological drought characteristics in Vietnam during the 1961-2007 period. Theoretical and Applied Climatology, 118(3), 367–375.

Wandinger U., Anja H., Ina M., Gelsomina P., Lucia M., Fabio M., 2011. Aerosols and Clouds: Long-term Database from Spaceborne Lidar Measurements. Leibniz Institute for Tropospheric Res https://www.tropos.de/fileadmin/user_upload/Institut/Abteilungen/Fernerkundung/Daten_PDF/Wandinger-ESA_2011.pdf (last accessed 1 August 2024).

Wilcoxon F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.

Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A., Liu Z., Hunt W.H., Young S.A., 2009. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology, 26, 2310–2323.

World Health Organization (WHO), 2016. Ambient air pollution: A global assessment of exposure and burden of disease. WHO Publication. https://www.who.int/publications/i/item/9789241511353.

World Health Organization (WHO), 2021. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO Publication. https://www.who.int/publications/i/item/9789240034228.

Yadav R., Sahu L.K., Beig G., Tripathi N., Jaaffrey S.N.A., 2017. Ambient particulate matter and carbon monoxide at an urban site of India: influence of anthropogenic emissions and dust storms. Environmental Pollution, 225, 291–303.

Downloads

Published

28-08-2024

How to Cite

Nguyen-Thuy, H., Ngo-Duc, T., & Dam-Duy, A. (2024). Assessing aerosol changes over Delhi using satellite and ground measurement data: Insights from a COVID-19 lockdown period. Vietnam Journal of Earth Sciences, 46(4), 570–594. https://doi.org/10.15625/2615-9783/21418

Issue

Section

Articles