Characterization of ionospheric irregularities over Vietnam and adjacent region for the 2008-2018 period

Dung Nguyen Thanh, Minh Le Huy, Christine Amory-Mazaudier, Rolland Fleury, Susumu Saito, Thang Nguyen Chien, Hong Pham Thi Thu, Thanh Le Truong, Mai Nguyen Thi
Author affiliations

Authors

  • Dung Nguyen Thanh 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Minh Le Huy 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Christine Amory-Mazaudier 1-Sorbonne Universités, UPMC Univ. Paris 06, UMR 7648, Laboratoire de Physique des Plasmas, F-75005, Paris, France; 2-T/ICT4D, ICTP, International Centre for Theoretical Physics, StradaCostiera, 11, I-34151 Trieste Italy
  • Rolland Fleury LAB-STICC, UMR 6285, Institut Mines-Telecom Atlantique, CS 83818, 29288 Brest Cédex 3, France
  • Susumu Saito Electronic Navigation Research Institute, National Institute of Maritime, Port and Aviation Technology, 7-42-23 Jindaiji-Higashi, Chofu, Tokyo 182-0012, Japan
  • Thang Nguyen Chien Institute of Geophysics, VAST, Hanoi, Vietnam
  • Hong Pham Thi Thu 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Thanh Le Truong Institute of Geophysics, VAST, Hanoi, Vietnam
  • Mai Nguyen Thi Institute of Geophysics, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/16502

Keywords:

GPS continuous data, TEC, ROTI, ionospheric irregularities, Southeast Asian region

Abstract

This paper presents the variations of the rate of change of Total Electron Content (TEC) index (ROTI), characterizing the occurrence of ionospheric plasma irregularities over Vietnam and neighboring countries in the Southeast Asian region using the continuous GPS data during the 2008-2018 period. The results showed that the occurrence of strong ROTI in all stations is maximum in equinox months March/April and September/October and depends on solar activity. The ROTI is weak during periods of low solar activity and strong during periods of high solar activity. There is an asymmetry between the two equinoxes. During maximum and declining phases of 2014-2016, occurrence rates in March equinox are larger than in September equinox, but during the descending period of 2010-2011, the occurrence rates in September equinox at almost all stations are larger than in March equinox. The correlation coefficients between the monthly occurrence rate of irregularities and the F10.7 solar index at the stations in the equatorward EIA crest region are higher than at those in the magnetic equatorial and the poleward EIA crest regions. The irregularity occurrence is high in the pre-midnight sector, maximum between 2000 LT to 2200 LT. The maximum irregularity occurrence is located around 4-5° degrees in latitude equator-ward away from the anomaly crests.

Downloads

Download data is not yet available.

References

Aarons J., 1993. The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci. Rev., 63(3-4), 209-243.

Abadi P., S. Saito, W. Srigutomo, 2014. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia. Ann. Geophys., 32, 7-17.

Abadi P., Y. Otsuka, T. Tsugawa, 2015. Effects of pre-reversal enhancement of E×B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets Space, 67. Doi: 10.1186/s40623-015-0246-7.

Abdu M.A., 2019. Day-to-day and short-term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Prog. Earth Planet Sci., 6:11. https://doi.org/10.1186/s40645-019-0258-1.

Abdu M.A., J.H.A. Sobral, I.S. Batista, 2000. Equatorial spread F statistics in the American longitudes: Some problems relevant to ESF description in the IRI scheme. Adv. Space Res., 25(l), 113-124.

Abiriga F., E.B. Amabayo, R. Jurua, P.J. Cilliers, 2020. Statistical characterization of equatorial plasma bubbles over East Africa. J. Atmos. Sol.-Terr. Phys., 105197. Doi: 10.1016/j.jastp.2020.105197.

Basu S., S. Basu, J. Aarons, J.P. McClure, M.D. Cousins, 1978. On the coexistence of kilometer- and meter-scale irregularities in the nighttime equatorial F region. J. Geophys. Res., 83(A9), 4219-4226.

Beach T.L., P.M. Kintner, 1999. Simultaneous global positioning system observations of equatorial scintillations and total electron content fluctuation. J. Geophys. Res. 104(A10), 22553-22565, https://10.1029/1999jA00220.

Beniguel Y., V. Romano, L. Alfonsi, M. Aquino, A. Bourdillon, P. Cannon, G. de Franceschi, S. Dubey, B. Forte, V. Gherm, N. Jakowski, M. Materassi, T. Noack, M. Pozoga, N. Rogers, P. Spalla, H. J. Strangeways, E.M. Warrington, A. Wernik, V. Wilken, N. Zernov, 2009. Ionospheric scintillation monitoring and modeling. Annals Geophys., 52(3-4), 391-416.

Bhattacharyya A., B. Kakad, S. Sripathi, K. Jeeva, K.U. Nair, 2014. Development of intermediate scale structure near the peak of the F region within an equatorial plasma bubble. J. Geophys. Res., 119, 3066-3076.

Burke W.J., L.C. Gentile, C. Y. Huang, C.E. Valladares, and S. Y. Su, 2004. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys.Res., 109, A12301. Doi: 10.1029/2004JA010583.

Carrano C., K. Groves, 2009. Ionospheric data processing and analysis. Workshop on Satellite Navigation Science and Technology for Africa, The Abdus Salam ICTP. Trieste, Italy.

Cervera M.A., R.M. Thomas, 2006. Latitudinal and temporal variation of equatorial ionospheric irregularities determined from GPS scintillation observations. Ann. Geophys., 24(12), 3329-3341.

Chandra H., S. Sharma, M.A. Abdu, I.S. Batista, 2003. Spread-F at anomaly crest regions in the Indian and American longitudes. Adv. Space Res., 31(3), 717-727. Doi: 10.1016/s027.

D’ujanga F.M., P. Baki, J.O. Olwendo, B.F. Twinamasiko, 2013. Total electron content of the ionosphere at two stations in East Africa during the 24-25 October 2011 geomagnetic storm. Adv. Space Res., 51, 712-721.

Fejer B.G., L. Scherlies, E.R. de Paula, 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res., 104(A9), 19859-19869.

Hisao T., M.W. Cristiano, A. O. B. F. Cosme, B. Diego, A. A. Mangalathayil, O. Yuichi, S. Kazuo, 2018. Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Progress Earth Planet. Sci., 5:3, https://doi.org/10.1186/s40645-018-0189-2.

Hu L., X. Zhao, W. Sun, Z. Wu, J. Zheng, H. Xie, Z. Huang, B. Cing, G. Li, 2020. Statistical characteristics and correlation of low latitude F region bottom-type irregularity layers and plasma plumes over Sanya. J. Geophys. Res.: Space Phys., https:/doi.org/10.1029/2020JA027855.

Huang C.Y., W.J. Burke, J.S. Machuzak, L.C. Gentile, P.J. Sultan, 2002. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology. J. Geophys. Res: Space Physics, 107(A12), SIA 7-1-SIA 7-10. Doi: 10.1029/2002ja009452.

Kelley M., 2009. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 96, second ed. eBook ISBN: 9780080916576. Academic Press. Elsevier, New-York.

Kelley M.C., J.P. McClure, 1981. Equatorial spread-F: A review of recent experimental results. J. Atmos. Terr. Phys., 43(5), 427- 435.

Klobuchar J., 1986. Design and characteristics of the GPS ionospheric time-delay algorithm for single frequency users, in: Proceedings of PLAN’86- Position Location and Navigation Symposium. Las Vegas. Nevada, 280-286, 4-7, November.

Komjathy A., L. Sparks, B.D. Wilson, A.J. Mannucci, 2005. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci., 40, RS6006, http://dx.doi.org/10.1029/2005RS003279.

Krall J., J.D. Huba, S.L. Ossakow, G. Joyce, J.J. Makela, E.S. Miller, M.C. Kelley, 2011. Modeling of equatorial plasma bubbles triggered by non-equatrial traveling ionosphericdistrubances. Geophys. Res. Lett., 38, L08103. Doi: 10.1029/2011GL046890.

Lakshmi Narayanan V., K. Shiokawa, Y. Otsuka, S. Saito, 2014. Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res., 119(11), 9268-9282. Doi: 10.1002/2014ja020368.

Le Huy M., C. Amory-Mazaudier, R. Fleury, A. Bourdillon, P. Lassudrie Duchesne, Tran Thi L., Nguyen Chien T., Nguyen Ha T., P. Vila, 2014. Time variations of the total electron content in the Southeast Asian equatorial ionization anomaly for the period 2006-2011. Adv. Space Res., 54, 355-368.

Le Huy Minh, Tran Thi Lan, C. Amory Mazaudier, R. Fleury, A. Bourdillon, J. Hu, Vu Tuan Hung, Nguyen Chien Thang, Le Truong Thanh, Nguyen Ha Thanh, 2016a. Continuous GPS network in Vietnam and results of study on the total electron content in the South East Asian region. Vietnam J. Earth Sci., 38(2), 153-165.

Le Huy Minh, Tran Thi Lan, R. Fleury, C. Amory Mazaudier, Le Truong Thanh, Nguyen Chien Thang, Nguyen Ha Thanh, 2016b. TEC variations and ionospheric disturbances during the magnetic storm in March 2015 observed from continuous GPS data in the Southeast Asia region. Vietnam J. Earth Sci., 38(3) 267-285.

Liu K., G. Li, B. Ning, 2015. Statistical characteristics of low-latitude ionospheric scintillation over China. Adv. Space Res., 55(5), 1356-1365. Doi: 10.1016/j.asr.2014.12.001.

Ma G., T. Maruyama, 2006. A super bubble detected by dense GPS network at east Asian longitudes. Geophys., Res. Lett., 33, L21103. Doi: 10.1029/2003JA009931.

Makela J.J., B.M. Ledvina, M.C. Kelley, 2004. Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii. Ann. Geophys., 22(9), 3109-3121. Doi: 10.5194/angeo-22-3109.

Maruyama T., N. Matuura, 1984. Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles. J. Geophys. Res., 89(A12), 10.903-10.912, https://doi.org/10.1029/jA039iA12p10903.

Maruyama T., S. Saito, M. Kawamura, K. Nozaki, J. Krall and J. D. Huba, 2009. Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: evidence for meridional wind control. Ann. Geophys., 27, 2027-2034.

Mendillo M., J. Baumgardner, 1982. Airglow characteristics of equatorial plasma depletions. J. Geophys. Res., 87(A9), 7641. Doi: 10.1029/ja087ia09p07641.

Moraes A. de O., B.C. Vani, E. Costa, J. Sousasantos, M.A. Abdu, F. Rodrigues, Y.C. Gladek, C.B.A. de Oliveira, J.F.G. Monico, 2018. Ionospheric scintillation fading coefficients for the GPS L1, L2 anf L5 frequencies, Radio Sci., 53, 1165-1174. Doi: 10.1029/2018RS006653.

Muldrew D.B., 1980. The formation of ducts and spread F and the initiation of bubbles by field-aligned currents. J. Geophys. Res., 85(A2), 613-625.

Nishioka M., A. Saito, T. Tsugawa, 2008. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res., 113, A05301. Doi: 10.1029/2007JA012605.

Okoh D., B. Rabiu, K. Shiokawa, Y. Otsuka, B. Segun, E. Falayi, R. Kaka, 2017. First Study on the Occurrence Frequency of Equatorial Plasma Bubbles over West Africa Using an All-Sky Airglow Imager and GNSS Receivers. J. Geophys Res: Space Physics, 122(12). Doi: 10.1002/2017JA024602.

Ossakow S.L, 1981. Spread- F theories - A review. J. Atmos. Terr. Phys., 43, 437-443.

Otsuka Y., A. Shinbori, T. Tsugawa, M. Nishioka, 2021. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan. Earth Planets Space, 73:22. Doi: 10.1186/s40623-020-01353-5.

Otsuka Y., K. Shiokawa, T. Ogawa, 2006. Equatorial ionospheric scintillations and zonal irregularities drifts observed with closely-spaced GPS receivers in Indonesia. J. Meteor. Soc. Jpn., 84A, 343-351.

Pi X., A.J. Mannucci, U.J. Lindqwister, C.M. Ho, 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24(18), 2283-2286.

Portillo A., M. Herraiz, S.M. Radicella, L. Ciraolo, 2008. Equatorial plasma bubbles studied using African slant total electron content observations. J. Atmos. Sol.-Terr. Phys., 70(6), 907-917. Doi: 10.1016/j.jastp.2007.05.019.

Rama Rao P.V.S., S. Gopi Krishna, K. Niranjan, D.S.V.V.D. Prasad, 2006. Study of spatial and temporal characteristics of L-band scintillation over the Indian low latitude region and their possible effects on GPS navigation. Ann. Geophys., 24, 1567-1580.

Rastogi R. G., 1980. Seasonal variation of equatorial spread F in the American and Indian zones. J. Geophys. Res., 85(A2), 722-726.

Sahai Y., P.R. Fagundes, J.A. Bittencourt, 2000. Transequatorial F-region ionospheric plasma bubbles: solar cycle effects. J. Atmos. Terr. Phys, 62(15), 1377-1383. Doi: 10.1016/s1364-6826(00)00179-6.

Saito S., S. Fukao, M. Yamamoto, Y. Otsuka, T. Maruyama, 2008. Decay of 3-m-scale ionospheric irregularities associated with a plasma bubble observed with the Equatorial Atmosphere Radar. J. Geophys. Res: Space Physics, 113, A11318. Doi: 10.1029/2008JA013118.

Smith J., R.A. Heelis, 2017. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophy. Res.: space Physics, 122, 5743-5755., Doi: 10.1002/2017JA024128.

Tam Dao, Minh Le Huy, Brett Carter, Que Le, Thanh Thuy Trinh, Bao Ngoc Phan, 2020. New observations of the total electron content and ionospheric scintillations over Ho Chi Minh City. Vietnam J. Earth Sci., 42(4), 320-333. Doi: 10.15625/0866-7187/42/4/15281.

Taori A., N. Parihar, R. Ghodpage, N. Dashora, S. Sripathi, E.A. Kherani, P. T. Patil, 2015. Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multi-station optical data. J. Geophys Res: Space Physics, 120(10), 8835-8847.

Tran Thi Lan, Le Huy Minh, C. Amory-Mazaudier, R. Fleury, 2017. Climatology of ionospheric scintillation over the Vietnam low-latitude region for the period 2006-2014. Adv. Space. Res, 60(8), 1657-1669. Doi: 10.1016/j.asr.2017.05.005.

Tsunoda R.T., 1985. Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res., 90(A1), 447-456.

Valladares C.E., J. Villalobos, R. Sheehan, M.P. Hagan, 2004. Latitudinal extension of low latitude scintillations measured with a network of GPS receivers. Ann. Geophys., 22, 3155-3175.

Wiens R.H., B.M. Ledvina, P.M. Kintner, M. Afewerki, Z. Mulugheta, 2006. Equatorial plasma bubbles in the ionosphere over Eritrea: occurrence and drift speed. Ann. Geophys., 24, 1443-1453.

Woodman R.F., C. La Hoz 1976.Radar observations of F region equatorial irregularities. J. Geophys. Res., 81(31), 5447-5466. Doi: 10.1029/ja081i031p05447.

Yokoyama T., 2017. A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. Progress Earth Planet. Sci., 4:37. Doi: 10.1186/s40645-017-0153-6.

Zalesak S.T., S.L. Ossakow and P.K. Chaturvedi, 1982. Nonlinear equtatorial spread F: The effect of neutral winds and background pedersen conductivity. J. Geophys. Res., 87(A1), 151-166, https://doi.org/10.1029/jA087iA01o00151.

Downloads

Published

30-08-2021

How to Cite

Nguyen Thanh, D. ., Le Huy, M., Amory-Mazaudier, C. ., Fleury, R. ., Saito, S. ., Nguyen Chien, T., Pham Thi Thu, H. ., Le Truong, T., & Nguyen Thi, M. (2021). Characterization of ionospheric irregularities over Vietnam and adjacent region for the 2008-2018 period. Vietnam Journal of Earth Sciences, 43(4), 465–484. https://doi.org/10.15625/2615-9783/16502

Issue

Section

Articles

Most read articles by the same author(s)