Occurrence rate of equatorial Spread F and GPS ROTI in the ionospheric anomaly region over Vietnam

Hong Pham Thi Thu, Mazaudier Christine Amory, Minh Le Huy, Saito Susumu, Dung Nguyen Thanh, Ngoc Luong Thi, Hung Luu Viet, Thang Nguyen Chien, Thanh Nguyen Ha, Nishioka Michi, Perwitasari Septi
Author affiliations

Authors

  • Hong Pham Thi Thu 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Mazaudier Christine Amory Sorbonne Universités, UPMC Univ. Paris 06, Paris, France
  • Minh Le Huy 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Saito Susumu Electronic Navigation Research Institute, MPAT, Tokyo 182-0012, Japan
  • Dung Nguyen Thanh 1-Institute of Geophysics, VAST, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam
  • Ngoc Luong Thi Institute of Geophysics, VAST, Hanoi, Vietnam
  • Hung Luu Viet Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
  • Thang Nguyen Chien Institute of Geophysics, VAST, Hanoi, Vietnam
  • Thanh Nguyen Ha Institute of Geophysics, VAST, Hanoi, Vietnam
  • Nishioka Michi National Institute of Information and Communications Technology, Tokyo, 184-8795, Japan
  • Perwitasari Septi National Institute of Information and Communications Technology, Tokyo, 184-8795, Japan

DOI:

https://doi.org/10.15625/2615-9783/21368

Abstract

This paper presents the first observations of the occurrence rates of Spread F and GPS total electron content (TEC) index (ROTI) over Vietnam at the equatorial trough and the northern tropical crest of ionization anomaly in the Asian sector. The data have been examined for the monthly and nighttime variations in the occurrence of these two data at Bac Lieu (9.28°N, 105.73°E, dip: 1.73°N) and Phu Thuy (21.03°N, 105.95°E, dip: 14.49°N) during 2023. For Bac Lieu, the monthly variation in the occurrence of the range Spread F (RSF) has the maxima in the February, May, and September months, while the mixed Spread-F (MSF) and ROTI occurrences exhibit a semiannual asymmetry with peaks in March/April and October. For the nighttime variation, occurrence peaks at 1915-1930 LT for RSF, at about 1945-2100 LT for MSF, and between 2030-2330 LT for ROTI. Regarding the frequency Spread F (FSF) occurrence, the maximum values in the monthly variation are in April, and the nighttime variation peaks at about 2115-2315 LT. For Phu Thuy, the monthly variation of RSF, MSF, and ROTI occurrences also exhibit a semiannual asymmetry with peaks in March/April and October. These peak magnitudes are largest for ROTI, moderate for MSF, and smallest for RSF. The nighttime variation of RSF, MSF, and ROTI occurrence peaks show intense season changes from winter to autumn at pre-midnight, spring at post-midnight, and summer at post-midnight. The FSF occurrences are more significant in summer than in other seasons, mainly after midnight. The time order appearance of the Spread F types at Bac Lieu and Phu Thuy is first of RSF, then MSF, and finally FSF. This could reflect that the formation mechanisms of Spread F types are different and require further research. Our observations also showed that the post-midnight occurrence of Spread F is much larger than ROTI at Bac Lieu and Phu Thuy. The monthly variations in occurrence rates of Spread F and ROTI at Bac Lieu and Phu Thuy are similar, but these occurrence rates at Bac Lieu are usually larger than at Phu Thuy.

Downloads

Download data is not yet available.

References

Aarons J., J.P. Mullen, H.E. Whitney, E.M. Mackrnzie, 1980. The dynamics of equatorial irregularity patch formation motion and decay, J. Geophys. Res., 85, 139–149.

Alfonsi L., L. Spogli, J.R. Tong, G. De Franceschi, V. Romano, A. Bourdillon, C.N. Mitchell, 2011. GPS scintillation and TEC gradients at

equatorial latitudes in April 2006. Advances in Space Research, 47(10), 1750–1757. https://doi.org/10.1016/j.asr.2010.04.020.

Alfonsi L., L. Spogli, M. Pezzopane, V. Romano, E. Zuccheretti, G. De Franceschi, M.A. Cabrera, R.G. Ezquer, 2013. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina, J. Geophys. Res.: Space Physics, 118, 4483–4502. Doi: 10.1002/jgra.50378.

Basu S., M.C. Kelley, 1979. A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation. Radio Science, 14, 471–485.

Bowman G.G., 1990. A review of some recent work on midlatitude spread F occurrence as detected by ionosondes, J. Geomag. Geoelectr., 42, 109–138.

Carrano C., K. Groves, 2009. Ionospheric data processing and analysis. Workshop on Satellite Navigation Science and Technology for Africa, The Abdus Salam ICTP, Trieste, Italy.

Chakraborty S.K., A. DasGupta, S. Ray, S. Banerjee, 1999. Long-term observation of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone, Radio Sci., 34, 241–255. Doi: 10.1029/98RS02576.

Chandra H., S. Sharma, M.A. Abdu, I.S. Batista, 2003. Spread-F at anomaly crest regions in the Indian and American longitudes, Adv. Space Res., 31, 717–727. Doi: 10.1016/S0273-1177(03)00034-6.

Chen W.S., C.C. Lee, J.Y. Liu, F.D. Chu, B.W. Reinisch, 2006. Digisonde spread F and GPS phase fluctuations observed in the equatorial ionosphere during solar maximum, J. Geophys. Res., 111, A12305. Doi: 10.1029/2006JA011688.

Cosgrove R.B., R.T. Tsunoda, 2003. Simulation of the nonlinear evolution of the sporadic E layer instability in the nighttime midlatitude ionosphere, J. Geophys. Res., 108(A7), 1283. Doi: 10.1029/ 2002JA009728.

Dao T., M. Le Huy, B. Carter, Q. Le, Trinh T.T., B.N. Phan, Y. Otsuka, 2020. New observations of the total electron content and ionospheric scintillations over Ho Chi Minh City. Vietnam Journal of Earth Sciences, 42(4), 320–333. Doi: 10.15625/0866- 7187/42/4/15281.

Dabas R.S., Rupesh M. Das, Kavita Sharma, S.C. Garg, C.V. Devasia, K.S.V. Subbarao, K. Niranjanc, P.V.S. Rama Rao, 2007. Equatorial and low latitude spread-F irregularity characteristics over the Indian region and their prediction possibilities, J. Atmos. Sol. Terr. Phys., 69, 685–696.

Das Gupta A., A. Maritra, S. Basu, 1981. Occurrence of nighttime VHF scintillations near the equatorial anomaly crest in the Indian sector, Radio Sci., 16, 1455–1458. Doi: 10.1029/RS016i006p01455.

Davies K., 1990. Ionospheric Radio, Peter Peregrinus Ltd., London.

D’ujanga F.M., G. Lugonvu, B. Ndiny, 2018. Probing the equatorial ionosphere using spread-F signatures and GPS scintillations at Maseno in East Africa, Adv. Space Res., 62, 1753–1761.

Fejer B.G., L. Scherliess, E.R. de Paula, 1999. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104(19), 859–869. Doi: 10.1029/1999JA900271.

Fukao S., M.C. Kelley, T. Shirakawa, T. Takami, M. Yamameto, T. Tsuda, S. Kato, 1991. Turbulent upwelling of the midlatitude ionosphere: 1. Observational results by the MU radar, J. Geophys. Res., 96, 3725–3746. Doi: 10.1029/90JA02253.

Haldoupis C., M.C. Kelley, G.C. Hussey, S. Shalimov, 2003. Role of unstable sporadic E layers in the generation of midlatitude spread F, J. Geophys. Res., 108(A12), 1446. Doi: 10.1029/2003JA009956.

Hong Pham Thi Thu, Christine Amory Mazaudier, Minh Le Huy, SusumuSaito, Kornyanat Hozumi, Dung Nguyen Thanh, Ngoc Luong Thi, 2022. Nighttime morphology of vertical plasma drifts over Vietnam during different seasons and phases of sunspot cycles, Adv. Space Res., 70, 411–426. ISSN: 0273-1177. https://doi.org/10.1016/j.asr.2022.04.010.

Huang C.-M., 1970. F region irregularities that cause scintillations and spread F echoes at low-latitude, J. Geophys. Res., 75, 4833–4841. Doi: 10.1029/JA075i025p04833.

Huang Y.N., 1985. Ionospheric electron content depletion associated with amplitude scintillation at the equatorial anomaly crest zone, J. Geophys. Res., 90, 4333–4339. Doi: 10.1029/JA090iA05p04333.

Huang Y.N., K. Cheng, W. T. Huang, 1987. Seasonal and solar cycle variations of spread F at the equatorial anomaly crest zone, J. Geomag. Geoelectr., 39, 639–657.

Kelley M.C., 1989. The Earth's Ionosphere, Int. Geophys. Ser, vol. 43, Academic, San Diego, Calif.

Kelley M., 2009. The Earth's Ionosphere: Plasma Physics and Electrodynamics, 96, second ed. eBook ISBN: 9780080916576. Academic Press. Elsevier, New-York.

Paul K.S., M.H. Rafi, H. Haralambous, M.G. Mostafa, 2024. Correlation of Rate of TEC Index and Spread F over European Ionosondes, Atmosphere, 15, 331. https:// doi.org/10.3390/atmos15030331.

Lan H.T., N.T. Trang, J. Macdougall, 2011. The occurrence of equatorial spread F over Ho Chi Minh City in years 2003 and 2005. Vietnam Journal of Earth Sciences, 33(2), 126–133. https://doi.org/10.15625/0866-7187/33/2/287.

Lee C.C., 2006. Examine the local linear growth rate of collisional Rayleigh-Taylor instability during solar maximum, J. Geophys. Res., 111, A11313. Doi: 10.1029/2006JA011925.

Lee C.C., F.D. Chu, W.S. Chen, J.Y. Liu, S.-Y. Su, Y.A. Liou, S.B. Yu, 2009. Spread F, GPS phase fluctuations, and plasma bubbles near the crest of equatorial ionization anomaly during solar maximum, J. Geophys. Res., 114, A08302. Doi: 10.1029/2009JA014195.

Lee C.C., S.-Y. Su, B.W. Reinisch, 2005a. Concurrent study of bottomside spread F and plasma bubble events in the equatorial ionosphere during solar maximum using Digisonde, and ROCSAT-1, Ann. Geophys., 23, 3473–3480.

Lee C.C., J.Y. Liu, B.W. Reinisch, W.S. Chen, F.D. Chu, 2005b. The effects of the pre-reversal ExB drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum, Ann. Geophys., 23, 745–751.

Le Huy M., L. Tran Thi, R. Fleury, C. Amory-Mazaudier, T. Le Truong, T. Nguyen Chien, T. Nguyen Ha, 2016. TEC variations and ionospheric disturbances during the magnetic storm in March 2015 observed from continuous GPS data in the Southeast Asia region, Vietnam Journal of Earth Sciences, 38(3), 267-285.

Li G., B. Ning, Y. Otsuka, M.A. Abdu, P. Abadi, Z. Liu, L. Spogli, W. Wan, 2021. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surveys in Geophysics, 42, 201–238.

Ma G., T. Maruyama, 2006. A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33(21), L21103. https://doi.org/10.1029/2006GL027512.

Mullen J.P., E. MacKenzie, S. Basu, H. Whitney, 1985. UHF/GHz scintillation observed at scension island from 1980 through 1982. Radio Sci., 20, 357–365. Doi: 10.1029/RS020i003p00357.

Nguyen Thanh D., M. Le Huy, C. Amory-Mazaudier, R. Fleury, S. Saito, T. Nguyen Chien, H. Pham Thi Thu, T. Le Truong, M. Nguyen Thi, 2021. Characterization of ionospheric irregularities over Vietnam and adjacent region for the 2008-2018 period. Vietnam Journal of Earth Sciences, 43(4), 1–20. https://doi.org/10.15625/2615-9783/16502.

Perkins F., 1973. Spread F and ionospheric currents, J. Geophys. Res., 78, 218–226. Doi: 10.1029/JA078i001p00218.

Pi X., A.J. Mannucci, U.J. Lindqwister, C.M. Ho, 1997. Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24(18), 2283–2286.

Rodrigues F.S., E.R. de Paula, M.A. Abdu, A.C. Jardim, K.N. Iyer, P.M. Kintner, D.L. Hysell, 2004. Equatorial spread F irregularity characteristics over Sa˜o Lu´ıs, Brazil, using VHF radar and GPS scintillation techniques, Radio Sci., 39, RS1S31. Doi: 10.1029/2002RS002826.

Saito S., T. Maruyama, 2006. Ionospheric height variations observed by ionosondes along magnetic meridian and plasma bubble onsets, Ann. Geophys., 24, 2991–2996. https://doi.org/10.5194/angeo-24-2991-2006.

Shiokawa K., C. Ihara, Y. Otsuka, T. Ogawa, 2003. Statistical study if nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052. Doi: 10.1029/ 2002JA009491.

Tran T.L., M. Le Huy, C. Amory-Mazaudier, R. Fleury, 2017. Climatology of ionospheric scintillation over the Vietnam low-latitude region for the period 2006–2014. Advances in Space Research, 60(8), 1657–1669.

Yang Z., Z. Liu, 2016. Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data. GPS Solutions, 20(4), 815–824. https://doi.org/10.1007/s10291-015-0492-y.

Yokoyama T., 2017. A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting, Progress in Earth and Planetary Science, 4(37), 1–13. Doi: 10.1186/s40645-017-0153-6.

Zhang Y., W. Wan, G. Li, L. Liu, L. Hu, B. Ning, 2015. A comparative study of GPS ionospheric scintillations and ionogram spread F over Sanya Y., Ann. Geophys., 33, 1421–1430.

Zuccheretti E, et al., 2003. The new AIS-INGV digital ionosonde. Annals of Geophysics, 46, 647–659. https://doi.org/10.4401/ag-4377.

Downloads

Published

19-08-2024

How to Cite

Pham Thi Thu, H., Christine Amory, M., Le Huy, M., Susumu, S., Nguyen Thanh, D., Luong Thi, N., Luu Viet, H., Nguyen Chien, T., Nguyen Ha, T., Michi, N., & Septi, P. (2024). Occurrence rate of equatorial Spread F and GPS ROTI in the ionospheric anomaly region over Vietnam. Vietnam Journal of Earth Sciences, 46(4), 553–569. https://doi.org/10.15625/2615-9783/21368

Issue

Section

Articles

Most read articles by the same author(s)