OVERVIEW OF SUBMARINE MUD VOLCANO
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/14/4/5820Keywords:
Mud volcano, submarine landslide, gas hydrate.Abstract
Mud volcanoes occur mostly within the sedimentary basins, both on land and seabed, where are weak areas of Earth crust or intersection of the fault systems. The activities of submarine mud volcano might cause potential risks for drilling operations and setting oil and gas pipeline on the sea floor. The activities of exploration and exploitation of oil and gas in the East Sea are pretty strong, especially in the sedimentary basins of the continental shelf. Therefore, in this paper, the authors focus on essential analysis of some characteristics of mud volcanoes as well as the mechanism of formation and their relationships with gas hydrate, submarine landslide as a premise for the next researches.Downloads
Metrics
References
Krastel, S., Spiess, V., Ivanov, M., Weinrebe, W., Bohrmann, G., Shashkin, P., and Heidersdorf, F., 2003. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters, 23(3-4): 230-238. DOI: https://doi.org/10.1007/s00367-003-0143-0
Milkov, A. V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1): 29-42. DOI: https://doi.org/10.1016/S0025-3227(00)00022-0
Hovland, M., and Judd, A., 1988. Seabed pockmarks and seepages: impact on geology, biology, and the marine environment. Springer.
Chow, J., Lee, J. S., Liu, C. S., Lee, B. D., and Watkins, J. S., 2001. A submarine canyon as the cause of a mud volcano - Liuchieuyu island in Taiwan. Marine Geology, 176(1): 55-63. DOI: https://doi.org/10.1016/S0025-3227(01)00157-8
Hühnerbach, V., and Masson, D. G., 2004. Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Marine Geology, 213(1): 343-362. DOI: https://doi.org/10.1016/j.margeo.2004.10.013
Mason, D., Harbitz, C., Wynn, R., Pederson, G., and Lovholt, F., 2006. Submarine landslides: processes, triggers and hazard protection. Philosophical Transactions of the Royal Society, 364, 2009-2039. DOI: https://doi.org/10.1098/rsta.2006.1810
Hedberg, H. D., 1974. Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58(4): 661-673. DOI: https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D
Barber, A. J., Tjokrosapoetro, S., and Charlton, T. R., 1986. Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia. AAPG Bulletin, 70(11): 1729-1741. DOI: https://doi.org/10.1306/94886CA9-1704-11D7-8645000102C1865D
Brown, K., and Westbrook, G. K., 1988. Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes. Tectonics, 7(3): 613-640. DOI: https://doi.org/10.1029/TC007i003p00613
Hjelstuen, B. O., Eldholm, O., Faleide, J. I., and Vogt, P. R., 1999. Regional setting of Håkon Mosby mud volcano, SW Barents Sea margin. Geo-Marine Letters, 19(1-2): 22-28. DOI: https://doi.org/10.1007/s003670050089
Cita, M. B., Ryan, W. B., and Paggi, L., 1981. Prometheus mud breccia: an example of shale diapirism in the western Mediterranean ridge. In Annales geologiques des Pays helleniques (Vol. 30, pp. 543-570). Laboratoire de géologie de l'Université.
Staffini, F., Spezzaferri, S., and Aghib, F. 1993. Mud diapirs of the Mediterranean Ridge: sedimentological and micropaleontological study of the mud breccia. Rivista italiana di paleontologia e stratigrafia, 99(2): 225-254.
Fusi, N., and Kenyon, N. H., 1996. Distribution of mud diapirism and other geological structures from long-range sidescan sonar (GLORIA) data, in the Eastern Mediterranean Sea. Marine geology, 132(1): 21-38. DOI: https://doi.org/10.1016/0025-3227(95)00151-4
Henry, P., Le Pichon, X., Lallemant, S., Foucher, J. P., Westbrook, G., and Hobart, M., 1990. Mud volcano field seaward of the Barbados Accretionary Complex: A deep‐towed side scan sonar survey. Journal of Geophysical Research: Solid Earth (1978-2012), 95(B6): 8917-8929. DOI: https://doi.org/10.1029/JB095iB06p08917
Vogt, P. R., Crane, K., Sundvor, E., Hjelstuen, B. O., Gardner, J., Bowles, F., and Cherkashev, G., 1999. Ground-Truthing 11-to 12-kHz side-scan sonar imagery in the Norwegian-Greenland Sea: Part II: Probable diapirs on the Bear Island fan slide valley margins and the Vøring Plateau. Geo-Marine Letters, 19(1-2): 111-130. DOI: https://doi.org/10.1007/s003670050099
Yin, P., Berne, S., Vagner, P., Loubrieu, B., and Liu, Z., 2003. Mud volcanoes at the shelf margin of the East China Sea. Marine Geology, 194(3): 135-149. DOI: https://doi.org/10.1016/S0025-3227(02)00678-3
Zitter, T. A. C., Huguen, C., and Woodside, J. M., 2005. Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep Sea Research Part I: Oceanographic Research Papers, 52(3): 457-475. DOI: https://doi.org/10.1016/j.dsr.2004.10.005
Medialdea, T., Somoza, L., Pinheiro, L. M., Fernández-Puga, M. C., Vázquez, J. T., León, R., ... and Vegas, R., 2009. Tectonics and mud volcano development in the Gulf of Cádiz. Marine Geology, 261(1): 48-63. DOI: https://doi.org/10.1016/j.margeo.2008.10.007
Ginsburg, G. D., Milkov, A. V., Soloviev, V. A., Egorov, A. V., Cherkashev, G. A., Vogt, P. R., ... and Khutorskoy, M. D., 1999. Gas hydrate accumulation at the Haakon Mosby mud volcano. Geo-Marine Letters, 19(1-2): 57-67. DOI: https://doi.org/10.1007/s003670050093
Eldholm, O., Sundvor, E., Vogt, P. R., Hjelstuen, B. O., Crane, K., Nilsen, A. K., and Gladczenko, T. P., 1999. SW Barents Sea continental margin heat flow and Håkon Mosby mud volcano. Geo-Marine Letters, 19(1-2): 29-37. DOI: https://doi.org/10.1007/s003670050090
Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J., 2003. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis (Vol. 54, pp. 1-216). American Geophysical Union. DOI: https://doi.org/10.1029/054SP