HYDRODYNAMICAL CHARACTERISTICS OF BINH CANG - NHA TRANG WATERS FROM MODELS: FEM AND ECOSMO
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/14/4/5818Keywords:
Tide, current, three-dimensional (3D) nonlinear model, finite difference method.Abstract
This paper has focused on the hydro-dynamical characteristics of Binh Cang - Nha Trang waters from 2 models: ECOSMO (finite difference) and FEM (finite element) based on the last observed data of the VAST’s project, code: VAST 07. 04/11-12. The seasonal currents simulated by FEM showed the existence of local eddies in the top of Nha Phu lagoon. Meanwhile, they have not been detected by ECOSMO (because the best stabilization of ECOSMO is achieved for the minimum depth of 2.0 meters). In addition, the spatial distances from the mesh grids of finite difference have had restrictions for modelling current regimes at coastal borders, islands, reefs, etc., as well as in the cases that the particular representation of local characteristics of small space configurations (the mouth of small rivers with complicated topography) is required. In this paper, some calculated results about self-cleaning capabilities (water exchange, residential water ...) of reseached water body have been persented.Downloads
Metrics
References
Bui Hong Long, Tran Van Chung, 2008. Modelling material transport in North Danger Reef, the Spratlys, based on three - dimensional nolinear finite element model for wind currents. Proceedings of the Results of the Philippines - Vietnam Joint Oceanograpghic and Marine Scientìfic Research Expedition in the South China Sea (JOMSRE I-IV). Silliman Univercity Press, Dumaguete City 6200, p. 135 -149.
Bùi Hồng Long, Trần Văn Chung, 2009. Tính toán dòng chảy trong khu vực nước trồi Nam Trung Bộ bằng mô hình dòng chảy ba chiều (3-D) phi tuyến. Tạp chí Khoa học và Công nghệ biển, 9(2): 1-25.
Bui Hong Long, Tran Van Chung, 2010. Some experimental calculation for 3D currents in the strong upwelling region of southern central Vietnam using finite element method. Proceedings of the International Conference Marine Biodiversity of East Asian Seas: Status, Challenges and Sustainable development. Nha Trang, Vietnam, 165-177.
Mellor, G. L., and Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851-875. DOI: https://doi.org/10.1029/RG020i004p00851
Blumberg, A. F., Galperin, B., and O'Connor, D. J., 1992. Modeling vertical structure of open-channel flows. Journal of Hydraulic Engineering, 118(8): 1119-1134. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1992)118:8(1119)
Gill, A. E., 1982. Atmosphere-ocean dynamics (Vol. 30). Academic press.
Galperin, B., Kantha, L. H., Hassid, S., and Rosati, A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences, 45(1): 55-62. DOI: https://doi.org/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
Backhaus, J. O., 1982. A semi-implicit scheme for the shallow water equations for application to shelf sea modelling. Continental Shelf Research, 2(4): 243-254. DOI: https://doi.org/10.1016/0278-4343(82)90020-6
Backhaus, J. O., 1985. A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrografische Zeitschrift, 38(4): 165-187. DOI: https://doi.org/10.1007/BF02328975
Hainbucher, D., Pohlmann, T., and Backhaus, J., 1987. Transport of conservative passive tracers in the North Sea: first results of a circulation and transport model. Continental Shelf Research, 7(10): 1161-1179. DOI: https://doi.org/10.1016/0278-4343(87)90083-5
Schrum, C., 1994. Numerical simulation of thermodynamic processes in the German Bight. Berichte aus dem Zentrum für Meeres-und Klimaforschung, (15).
Fanjul, E. A., Gómez, B. P., and Sánchez-Arévalo, I. R., 1997. A description of the tides in the Eastern North Atlantic. Progress in Oceanography, 40(1): 217-244. DOI: https://doi.org/10.1016/S0079-6611(98)00003-2
Hainbucher, D., and Backhaus, J. O., 1999. Circulation of the eastern North Atlantic and north‐west European continental shelf–a hydrodynamic modelling study. Fisheries Oceanography, 8(Suppl. 1): 1-12. DOI: https://doi.org/10.1046/j.1365-2419.1999.00009.x
Harms, I. H., Backhaus, J. O., Hainbucher, D., 1999. Modelling the seasonal variability of circulation and hydrography in the Iceland-Faeroe-Shetland overflow area. ICES CM 1999/L:10, Annual Science Conference, 29 September to 2 October 1999, Stockholm, Sweden.
Hainbucher, D., Hao, W., Pohlmann, T., Sündermann, J., and Feng, S., 2004. Variability of the Bohai Sea circulation based on model calculations. Journal of marine systems, 44(3): 153-174. DOI: https://doi.org/10.1016/j.jmarsys.2003.09.008
Pohlmann, T., 1996. Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional baroclinic shelf sea circulation model. Continental Shelf Research, 16(2): 147-161. DOI: https://doi.org/10.1016/0278-4343(94)E0037-M
Pohlmann, T., 2006. A meso-scale model of the central and southern North Sea: consequences of an improved resolution. Continental Shelf Research, 26(19): 2367-2385. DOI: https://doi.org/10.1016/j.csr.2006.06.011
Simionato, C. G., Dragani, W., Meccia, V., and Nuñez, M., 2004. A numerical study of the barotropic circulation of the Rı́o de la Plata estuary: sensitivity to bathymetry, the Earth's rotation and low frequency wind variability. Estuarine, Coastal and Shelf Science, 61(2): 261-273. DOI: https://doi.org/10.1016/j.ecss.2004.05.005
Ratsimandresy, A. W., Sotillo, M. G., Álvarez Fanjul, E., Carretero Albiach, J. C., Pérez Gómez, B., and Hajji, H., 2008. A 44-year (1958-2001) sea level residual hindcast over the Mediterranean Basin. Physics and Chemistry of the Earth, Parts A/B/C, 33(3): 250-259. DOI: https://doi.org/10.1016/j.pce.2007.02.002
Meccia, V. L., Simionato, C. G., Fiore, M. E., D'Onofrio, E. E., and Dragani, W. C., 2009. Sea surface height variability in the Rio de la Plata estuary from synoptic to inter-annual scales: Results of numerical simulations. Estuarine, Coastal and Shelf Science, 85(2): 327-343. DOI: https://doi.org/10.1016/j.ecss.2009.08.024
Barthel, K., Rosland, R., and Thai, N. C., 2009. Modelling the circulation on the continental shelf of the province Khanh Hoa in Vietnam. Journal of Marine Systems, 77(1): 89-113. DOI: https://doi.org/10.1016/j.jmarsys.2008.11.010
Mayer, B., Damm, P. E., Pohlmann, T., and Rizal, S., 2010. What is driving the ITF? An illumination of the Indonesian throughflow with a numerical nested model system. Dynamics of Atmospheres and Oceans, 50(2): 301-312. doi:10.1016/-j.dynatmoce.2010.03.002. DOI: https://doi.org/10.1016/j.dynatmoce.2010.03.002
Kochergin, V. P., 1987. Three‐Dimensional Prognostic Models. Three-dimensional coastal ocean models, 201-208. DOI: https://doi.org/10.1029/CO004p0201
Mellor, G. L., and Yamada, T., 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7): 1791-1806. DOI: https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
Arakawa, A., and Lamb, V. R., 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in computational physics, 17, 173-265. DOI: https://doi.org/10.1016/B978-0-12-460817-7.50009-4
Moll, A., and Radach, G., 1998. Advective contributions to the heat balance of the German Bight (LV Elbe 1) and the central North Sea (OWS Famita). Deutsche Hydrografische Zeitschrift, 50(1): 9-31. DOI: https://doi.org/10.1007/BF02764474
Trần Văn Chung, Nguyễn Hữu Huân, Bùi Hồng Long, Tô Duy Thái, 2011. Nghiên cứu đặc trưng dòng chảy, nhiệt muối vực nước Bình Cang - Nha Trang bằng mô hình Ecosmo. Hội nghị Khoa học và Công nghệ biển toàn quốc lần thứ V. Quyển 2: Khí tượng, thủy văn và động lực học biển. Nxb. Khoa học tự nhiên và Công nghệ, 205- 213.
Đài khí tượng thủy văn khu vực Nam Trung Bộ, 2004. Đặc điểm khí hậu và thủy văn tỉnh Khánh Hòa. Sở Khoa học và Công nghệ tỉnh Khánh Hòa, 155.