Gasgeochemical features in the western part of the East Vietnam Sea (Bien Dong Sea)

Syrbu N. S., Nguyen Hoang, Shakirov R. B., Kholmogorov A. O., Venikova A. L., Le Duc Anh, Legkodimov A. A.
Author affiliations

Authors

  • Syrbu N. S. V. I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
  • Nguyen Hoang Institute of Geological Sciences, VAST, Vietnam
  • Shakirov R. B. V. I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
  • Kholmogorov A. O. V. I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
  • Venikova A. L. V. I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
  • Le Duc Anh Institute for Marine Geology and Geophysics VAST, Vietnam
  • Legkodimov A. A. V. I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia

DOI:

https://doi.org/10.15625/1859-3097/17229

Keywords:

Methane, hydrogen, helium, Bien Dong Sea, gasgeochemical fields, seismotectonic.

Abstract

During the joint Russian-Vietnamese studies in the East Vietnam Sea (known as Bien Dong or the South China Sea), manifestations of new hydrocarbon-accumulating zones were discovered; evidences of the presence of mineral indicators for solid minerals in shelf deposits were obtained; a unique zone, where accumulations of ferromanganese crusts and nodules have been formed, was revealed for the first time; evidence of unique properties of deep-water fine-dispersed carbonate sediments (which makes it possible to attribute them to an independent type of mineral resources of the East Vietnam Sea) were obtained; the ikaite mineral (that serves as an indicator of methane migration zones and cold marine paleo-conditions) was discovered in the Phu Khanh basin; heavy concentrates with indicators of rare forms of ore mineralization were collected; features of methane and mercury fluxes into the atmosphere, cultures of methane-oxidizing, oil-oxidizing and sulfate-reducing bacteria were registered for the first time within the study areas. New data on gravity and magnetic field anomalies along the shelf and slope of Vietnam have been obtained. The article presents the results of coastal geophysical and gasgeochemical research obtained in 2010–2020 within the Joint Russian-Vietnamese Laboratory for Marine Geosciences (POI FEB RAS - IMGG VAST). For the first time, anomalous methane fields (comparable to anomalies on the oil- and gas-bearing shelf and the gas hydrate-bearing slope of Sakhalin Island) were registered in the water column. The gravimagnetic survey was carried out on the central and southern shelf and the continental slope of Vietnam; the executed works supplemented the geophysical data, which had been obtained in the 80s–90s of the preceding century. The paper contributes to the Russia-Vietnamese program within the UN Decade of Ocean Sciences for Sustainable Development framework.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Lein, A. Y., and Ivanov, M. V., 2009. Biogeokhimicheskii Tsikl Metana v Okeane (Biogeochemical Cycle of Methane in the Ocean). Lisitzin, A.P. (Ed.). Nauka Publ. (Moscow), 576 p.

Obzhirov, A. I., Sosnin, V. A., and Salyuk, A. N., 2002. Monitoring of methane in the Okhotsk Sea. Min. ed. AI Obzhirov, AN Saluki, OF Vereshchagin. Vladivostok, Dalnauka, 250 p.

Mironyuk, S. G., and Otto, V. P. 2014. Gas-saturated seabed and natural gas emissions of hydrocarbons: patterns of distribution and danger for engineering structures. Georisk, 2, 8–18. (in Russian).

Koblov, E. G., Kharakhinov, A. V., and Tkacheva, N. A., 2008. The development of unconventional oil exploration facilities is one of the main reserves for the growth of the shelf resource base Sakhalin. Oil economy, 8, 48–51.

Petford, N., and McCaffrey, K., 2003. Hydrocarbons in crystalline rocks: an introduction. Geological Society, London, Special Publications, 214(1), 1–5.

Dmitrievsky, A. N., and Valyaev, B. N., 2010. Distribution and resources of methane of gas hydrates. Electronic scientific journal “Georesources, geoenergetics, geopolitika”. Institute of Oil and Gas Problems of the Russian Academy of Sciences. (in Russian).

Nikiforov, V. M., Kulinich, R. G., Valitov, M. G., Dmitriev, I. V., Starzhinsky, S. S., and Shkabarnya, G. N., 2013. Peculiarities of the fluid regime in the lithosphere of the junction zone between South Primorye and the Sea of Japan from the comprehensive geophysical data. Russian Journal of Pacific Geology, 7(1), 46–55.

Ginsburg, G. D., and Soloviev, V. A., 1994. Submarine gas hydrates. Leningrad, VNIIOkeangeologiya, 86 p. (in Russian).

Gresov, A. I., Obzhirov, A. I., Korovitskaya Ye, V., and Shakirov, R. B., 2009. Methane-bearing and prospects of methane resources development from coal layers in the south of Far East basins. Tikhookeanskaya Geologiya, 28(2), 103–116. (in Russian).

Lisitsyn, A. P. 1983. Biogeochemistry of gases in the ocean. Ocean Biogeochemistry. Ed. by Monin, A.S., Lisitsyna, A. P. Moscow, Nauka. pp. 274–276.

Obzhirov, A. I., 1993. Gas geochemical fields of near bottom water layer of the seas and oceans. Nauka, Moscow. pp. 139. (in Russian).

Podolyan, V. I., Sedykh, A. K., Penzin, Yu. P., and Gretsov, A. I., 1999. Coal base of Russia. (Vol. 5, Book 2. pp. 638). Moscow, Geoinformmark. (in Russian).

Judd, A., and Hovland, M., 2007. Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge: Cambridge University Press. pp. 475.

Max, M. D., 2000. Natural gas hydrate in oceanic and permafrost environments (pp. 410). Kluwer Academic Publishers. P.O. Box 332, 3300 AH Dordrecht, the Netherlands.

Max, M. D., Dillon, W. P., Nishimura, C., and Hurdle, B. G., 1998. Sea-floor methane blow-out and global firestorm at the K–T boundary. Geo-Marine Letters, 18(4), 285–291.

Milkov, A. V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1–2), 29–42.

Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107(2), 486–513.

Sloan Jr, E. D., and Koh, C. A., 2007. Clathrate hydrates of natural gases. CRC press.

Suess, E., 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Inter. J. of Earth Sciences, 103(7), 1889–1916.

Avdejko, G. P., Gavrilenko, G. M., Chertkova, L. V., Bondarenko, V. I., Rashidov, V. A., Guseva, V. I., Maltseva, V. I. and Sazonov, V. I. 1984. The underwater gashydrothermal activity on the north-west slope of Paramushir island (Kuril islands). Volcanology and Seismology, 6, 66–81. (in Russian).

Emelyanova, T. A., and Lelikov, E. P., 2010. The role of volcanism in the development of the Japan, Okhotsk, and Philippine marginal seas. Petrology, 18(6), 624–645.

Emelyanova, T. A., and Lelikov, E. P. 2012. Features of volcanism and geodynamics of the Japanese and Okhotsk seas. (Issue 4, pp. 104–121). Geology and minerals of the surrounding seas of Eurasia. Moscow: GEOS. (in Russian).

Izosov, L. A., Konovalov, Yu. I., and Emelyanova T. A., 2000. Problems of geology and diamond-bearing of Continent - Ocean Transitional Zone (Japan Sea and Yellow Sea Regions). Vladivostok: Dalnauka (Publ.). 326 p.

Izosov, L.A., and Melnikov, N. G., 1988. On the scaly-covering structures of Western Primorye. Tikhookeanskaya Geology, 6, 47–53. (in Russian).

Licht, F. R., 1984. Morphotectonics and geological development of the depression of the Sea of Japan. Geotectonics, 2, 97–105. (in Russian).

Tsoy, I. B., 2002. Paleontological characteristics and biostratigraphy of the sedimentary cover in the Sea of Okhotsk. In Geology and mineral resources of the Russian shelf areas (pp. 323–331).

Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O., 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles, 8(4), 465–480.

Chung, Y. S., and Tans, P. P., 1997. Results of 7-year monitoring of greenhouse gases at Tae-ahn Peninsula, Korea. Global Atmospheric Chemistry, IGAC, Nagoya. IP-10.

Cicerone, R. J., and Oremland, R. S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2(4), 299–327.

Dlugokencky, E. J., Walter, B. P., Masarie, K. A., Lang, P. M., and Kasischke, E. S., 2001. Measurements of an anomalous global methane increase during 1998. Geophysical Research Letters, 28(3), 499–502.

Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia Gil, S., and Jukes, V., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2(2), 109–126.

Oremland, R. S., 1979. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters. Limnol. and Oceanography, 24(6), 1136–1141.

Owens, N. J. P., Law, C. S., Mantoura, R. F. C., Burkill, P. H., and Llewellyn, C. A., 1991. Methane flux to the atmosphere from the Arabian Sea. Nature, 354(6351), 293–296.

Rehder, G., Keir, R. S., Suess, E., and Pohlmann, T., 1998. The Multiple Sources and Patterns of Methane in North Sea Waters. Aquatic Geochemistry, 4(3), 403–427.

Rehder, G., Keir, R. S., Suess, E., and Rhein, M., 1999. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophysical Research Letters, 26(5), 587–590.

Swinnerton, J. W., Linnenbom, V. J., and Cheek, C. H., 1969. Distribution of methane and carbon monoxide between the atmosphere and natural waters. Enviro. Scie. & Tech., 3(9), 836-838.

Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U., and Johnsen, S., 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394(6695), 739–743.

Etheridge, D. M., Steele, L., Francey, R. J., and Langenfelds, R. L., 1998. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research: Atmospheres, 103(D13), 15979–15993.

Laverov, N. P., Kremenetsky, A. A., Burenkov, E. K., Golovin, A. A., 2003. Applied geochemistry - problems and ways of development. Otechestvennaya Geology, 2, 27–31. (in Russian).

Derkachev, A. N., and Nikolaeva, N. A., 2010. Environmental mineralogical indicators of near-continental sediment formation within Pacific Ocean western part. Dalnauka, Vladivostok.

Sokolov, V. A., 1971. Geochemistry of natural gases. Moscow, Nedra.

Starobinets, I. Y. S., and Usmanov, R. I., 1990. On the formation of anomalous hydrocarbon fields over oil and gas deposits in seismoactive zones. In Doklady Akademii Nauk, 311(5), 1090–1093.

Vysotsky, I. V., 1979. Geology of natural gas. Nedra, Moscow.

Alekseev, F. A., Voitov, G. I., Lebedev, V. S., and Nesmelova, Z. N., 1978. Methane. Moskva, Nedra.

Obzhirov, A. I., 1992. Gas-geochemical manifestations of gas-hydrates in the Sea of Okhotsk. Alaska Geology, 21(7), 1–7.

Obzhirov, A., Shakirov, R., Salyuk, A., Suess, E., Biebow, N., and Salomatin, A., 2004. Relations between methane venting, geological structure and seismo-tectonics in the Okhotsk Sea. Geo-Marine Letters, 24(3), 135–139.

Etiope, G., Italiano, F., Fuda, J. L., Favali, P., Frugoni, F., Calcara, M., Smriglio, G., Gamberi, F., and Marani, M., 2000. Deep submarine gas vents in the Aeolian offshore. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(1), 25–28.

Hagen, R. A., and Vogt, P. R., 1999. Seasonal variability of shallow biogenic gas in Chesapeake bay. Marine Geology, 158(1–4), 75–88.

Heggland, R., 1998. Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Mar. and Petro. Geo., 15(1), 1–9.

Lammers, S., Suess, E., Mansurov, M. N., and Anikiev, V. V., 1995. Variations of atmospheric methane supply from the Sea of Okhotsk induced by the seasonal ice cover. Glo. Bio. Cycles, 9(3), 351–358.

Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., and Martin, J. B., 2002. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Mar. Geo., 181(1–3), 285–304.

Vogt, P. R., Gardner, J., and Crane, K., 1999. The Norwegian–Barents–Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo-Marine Letters, 19(1), 2–21.

Kulinich, R. G., and Obzhirov, A. I., 1985. On the structure and current activity of the junction zone of the Sunda shelf and the South China Sea basin. Tikhookean. Geol., 3, 102–106.

Kulinich, R. G., and Obzhirov, A. I., 2003. Barite–carbonate mineralization, methane anomalies, and geophysical fields in the Deryugin Basin (Sea of Okhotsk). Tikhookean. Geol., 22(4), 35–40.

Obzhirov, A., Ilichev, V., and Kulinich, R., 1985. Natural gas anomaly in bottom waters of South China Sea. In Dokl. Akad. Nauk SSSR, 281(5), 1206–1209.

Abrams, M. A., 1992. Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska. Mar. & Petro. Geo., 9(2), 208–221.

Dafner, E., Obzhirov, A., and Vereshzhagina, O., 1997. Distribution of methane in waters of the Okhotsk and western Bering Seas, and the area of the Kuril islands. Hydrobiologia, 362(1), 93–101.

Hovland, M., Croker, P. F., and Martin, M., 1994. Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Marine and Petroleum Geology, 11(2), 232–246.

Fischer, T. P., Roggensack, K., and Kyle, P. R., 2002. Open and almost shut case for explosive eruptions: Vent processes determined by SO2 emission rates at Karymsky volcano, Kamchatka. Geology, 30(12), 1059–1062.

Selyangin, O. B., and Ponomareva, V. V., 1999. Gorelovsky volcanic center, South Kamchatka: Structure and evolution. Volca. & Sei., 21(2), 163–194.

Taran, Y. A., 2009. Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka–Kuril subduction zone. Geochimica et Cosmochimica acta, 73(4), 1067–1094.

Taran Yu, A., Pilipenko, V. P., Rozhkov, A. M., and Vakin, E. A., 1992. A geochemical model for fumaroles of Mutnovsky volcano. Kamchatka, USSR Volcanology and Geothermal Research, 49, 269–283.

Tsunogai, U., Kosaka, A., Nakayama, N., Komatsu, D. D., Konno, U., Kameyama, S., Nakagawa, F., Sumino, H., Nagao, K., Fujikura, K., and Machiyama, H., 2010. Origin and fate of deep-sea seeping methane bubbles at Kuroshima Knoll, Ryukyu forearc region, Japan. Geochemical Journal, 44(6), 461–476.

Frankenberg, C., Meirink, J. F., Bergamaschi, P., Goede, A. P. H., Heimann, M., Körner, S., Platt, U., van Weele, M., and Wagner, T., 2006. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. Journal of Geophysical Research, 111, D07303.

Kulm, L. D., Suess, E., Moore, J. C., Carson, B., Lewis, B. T., Ritger, S. D., Kadko, D. C., Thornburg, T. M., Embley, R. W., Rugh, W. D., Massoth, G. J., Langseth, M. G., Cochrane, G. R., and Scamman, R. L., 1986. Oregon subduction zone: venting, fauna, and carbonates. Science, 231(4738), 561–566.

Yun, J. W., Orange, D. L., and Field, M. E., 1999. Subsurface gas offshore of northern California and its link to submarine geomorphology. Marine Geology, 154(1–4), 357–368.

Lein, A. Y., and Sagalevich, A. M., 2000. Smokers of the Rainbow field—an area of large-scale abiogenic methane synthesis. Priroda, 8, 44–53.

Baraza, J., Ercilla, G., and Nelson, C. H., 1999. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain). Marine Geology, 155(1–2), 191–215.

Callender, W. R., and Powell, E. N., 1999. Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today?. Inter. J. Earth Sciences, 88(3), 377–391.

Kvenvolden, K. A., 1988. Methane hydrate—a major reservoir of carbon in the shallow geosphere?. Chemical Geology, 71(1–3), 41–51.

Tréhu, A. M., Torres, M. E., Moore, G. F., Suess, E., and Bohrmann, G., 1999. Temporal and spatial evolution of a gas hydrate–bearing accretionary ridge on the Oregon continental margin. Geology, 27(10), 939–942.

Anh, L. D., Trung, N. N., Phach, P. V., Hung, D. Q., Thanh, N. T., Diep, N. V., Nam, B. V., Shakirov, R., Obzhirov, A., Iugai, I., Mal’tseva, E., Telegin, I., and Syrbu, N., 2014. Characteristics of helium, methane and hydrogen distribution and their relationship with fault systems in the North of the Gulf of Tonkin. Viet. J. Mar. Scie. Tech., 14(4), 78–88.

Akulichev, V. A., Obzhirov, A. I., Shakirov, R. B., Van Phach, P., Trung, N. N., Hung, D. Q., Mal’tseva, E. V., Syrbu, N. S., Polonilk, N. S., and Anh, L. D., 2015. Anomalies of natural gases in the Gulf of Tonkin (South China Sea). In Doklady Earth Sciences, 461(1), 203–207.

Tseng, H. C., Chen, C. T. A., Borges, A. V., DelValls, T. A., and Chang, Y. C., 2017. Methane in the South China Sea and the Western Philippine Sea. Continental Shelf Research, 135, 23–34.

Shakirov, R. B., Lan, N. H., Yatsuk, A., Mishukova, G., and Shakirova, M., 2018. Methane flux into the atmosphere in the Bien Dong (East Sea of Vietnam). Viet. J. Mar. Scie. and Tech., 18(3), 250–255.

Shakirov, R. B., Valitov, M. G., Obzhirov, A. I., Mishukov, V. F., Yatsuk, A. V., Syrbu, N. S., and Mishukova, O. V., 2019. Methane anomalies, its flux on the sea–atmosphere interface and their relations to the geological structure of the South-Tatar sedimentary basin (Tatar Strait, the Sea of Japan). Marine Geophysical Research, 40(4), 581–600.

Shakirov, R. B., Hoang, N., Shinjo, R., Obzhirov, A., Syrbu, N., and Shakirova, M., 2019. Features in REE and methane anomalies distribution in the East China Sea water column: a comparison with the South China Sea. Water Res., 46(5), 807–816.

Le Duc, L., Nguyen, H., Shinjo, R., Shakirov, R. B., and Obzhirov, A., 2021. Chemical, mineralogical, and physicochemical features of surface saline muds from Southwestern sub-basin of the East Vietnam Sea: Implication for new peloids. Viet. J. Earth Scien., 43(4), 496–508.

Syrbu, N. S., Shakirov, R. B., Anh, L. D., Kholmogorov, A. O., Iakimov, T. S., and Kalgin, V. Y., 2020. Formation of abnormal gas-geochemical fields of methane, helium, and hydrogen in Northern Vietnam, Its Coastal and Adjacent Water Areas. Lithology and Mineral Resources, 55(6), 512–527.

Ilatovskaya, P. V., Semenov P. B., …, Ryskova E. O., 2012. Distribution of gaseous hydrocarbons in the bottom sediments and the bottom-boundary layer of the water column of the continental shelf of South Vietnam. Oil and gas geology. Theory and practice, 7(4), 1–13.

Shakirov, R. B., Sorochinskaya A. V., Syrbu N. S., Trung, N. N., Phach, P. V., Anh, L. D., Thanh, N. T., 2017. Gas-geochemical features of sediments in the Tonkin Gulf (South China Sea). Vestnik of FEB of RAS, (4), 33–42.

Shakirov, R. B., Lee, N. S., Obzhirov, A. I., Valitov, M. G., Sedin, V. T., Telegin, Yu. A., Proshkina, Z. N., Okulov, A. K., Storozhenko, A. V., Ivanov, M. V., Shvalov, D. A., Legkodimov, A. A., Eskova, A. I., Lipinskaya, N. A., Bovsun, M. A., Makseev, D. S., Kalgin, V. Yu., Yakimov, T. S., Thanh, N. T., and Anh, L. D., 2020. Integrated Russian-Vietnamese geological-geophysical and oceanographic expedition in the South China Sea (R/V “Akademik M.A. Lavrentyev”, cruise 88, 2019). Vestnik of FEB of RAS, (3), 138–152.

Shakirov, R. B., Cuong, D. H., Obzhirov, A. I., Valitov, M. G., Lee, N. S., Legkodimov, A. A., Kalgin, V. Yu., Yeskova, A. I., Proshkina, Z. N., Telegin, Yu. A., Storozhenko, A. V., Ivanov, M. V., Pletnev, S. P., Sedin, V. T., Bulanov, A. V., Shvalov, D. A., Lipinskaya, N. A., Bovsun, M. A., Makseev, D. S., Thanh, N. T., Anh, L. D., and Luong, L. D., 2021. Integrated Geological–Geophysical and Oceanographic Research in the South China Sea: Cruise 88 of the R/V “Akademik MA Lavrentyev”. Oceanology, 61(1), 147–149.

Eskova, A. I., Ponomareva, A. L., Legkodimov, A. A., Kalgin, V. Y., Shakirov, R. B., and Obzhirov, A. I., 2020. The Characteristics and Distribution of Indicator Microorganisms in the Marine Sediments from the South-China Sea. The bulletin of Irkutsk State University. «Geoarchaeology, Ethnology, and Anthropology Series», 33, 33–43.

[85] Dolginov, E. A., Bashkin, Yu. V., Belousov, T. P., Kao, D. T., Le, V. Z., 2010. Rift and epirift structures of northwestern Vietnam and their probable analogues. Proceedings of higher educational estab. Geol. & Exp., 5, 3–8.

Shakirov, R. B., Obzhirov, A. I., Syrbu, N. S., Trung, N. N., Khyn, Z. K., Mal’tseva, E.V., Sorochinskaya, A. V., Yugai, I. G., Anh, L. D., Phach, P. V., Polonik, N. S., Nam, B. V., and Diep, N. V., 2015. Features of the distribution of natural gases in bottom sediments and water in the Northwestern part of the Gulf of Tonkin (East Vietnam Sea, Vietnam). Geo. and Nat. Res., (4), 178–188.

Prasolov, E. M. (1990). Isotope geochemistry and origin of natural gases. Leningrad, Nedra, 1–283.

Kopf, A. J., 2002. Significance of mud volcanism. Reviews of Geophysics, 40(2), 2-1.

Kulinich, R. G., Zabolotnikov, A. A., Markov, Y. D., Zhuravlev, A. V., Zdorovenin, V. V., Golovan’, A. A., Obzhirov, A. I., and Nikolaeva, N. A., 1989. Cenozoic Evolution of the Earth’s Crust and Tectonogenesis of Southeastern Asia. Nauka, Moscow.

Kulinich, R. G., and Valitov, M. G., 2011. Thicknesses and types of the crust beneath the Sea of Japan inferred from marine and satellite gravimetric investigations. Tikhookeanskaya Geologiya, 30(6), 3–13. (in Russian).

Areshev, E. G., 2003. Oil and gas potential of the marginal seas of the Far East and Southeast Asia (pp. 288). Moscow: Avanti. (in Russian).

Gavrilov, V. P., Dzyublo, A. D., Pospelov, V. V., and Shniperov, O. A., 1995. Geology and oil -bearing capacity of the South Vietnam gap foundation. Geology of Oil and Gas, (4), 25–32.

Vovk, V. S., Gulev, V. L., …, Dzyublo, A. D., 2008. Oil and gas foundation of the shelf of central and North Vietnam. Geology of Oil and Gas, (2), 45–51.

Rodnikov, A. G., Zabarinskaya, L. P., Rashidov, V. A., Sergeyeva, N. A., and Nisilevich, M. V., 2011. Deep structure of continental margins in the South China Sea region. Bull. Kraunts, Nauki Zemle, 18(2), 52–72.

Tuyen, N. H., Phach, P. V., Shakirov, R. B., Trong, C. D., Hung, P. N., and Anh, L. D., 2018. Geoblocks recognition and delineation of the earthquake prone areas in the Tuan Giao area (Northwest Vietnam). Geotectonics, 52(3), 359–381.

Rehder, G., and Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75(1–2), 89–108.

Trung, N. N., 2012. The gas hydrate potential in the South China Sea. Journal of petroleum science and Engineering, 88, 41–47.

Di, P., Feng, D., and Chen, D., 2014. Temporal variation in natural gas seep rate and influence factors in the Lingtou promontory seep field of the northern South China Sea. TAO: Terrestrial, Atmo. and Oceanic Sciences, 25(5), 665–672.

Liu, C. S., Huang, I. L., and Teng, L. S., 1997. Structural features off southwestern Taiwan. Marine Geology, 137(3–4), 305–319.

Wu, N., Zhang, H., Yang, S., Zhang, G., Liang, J., Su, X., Schultheiss, P., Holland, M., and Zhu, Y., 2011. Gas Hydrate System of Shenhu Area, Northern South China Sea: Geochemical Results. Journal of Geological Research, 2011, 73–82.

Han, X., Suess, E., Huang, Y., Wu, N., Bohrmann, G., Su, X., Eisenhauer, A., Rehder, G., and Fang, Y., 2008. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249(3–4), 243–256.

Phuong, N. H., 1991. Probabilistic assessment of earthquake hazard in Vietnam based on seismotectonic regionalization. Tectonophys., 198(1), 81–93.

Rodnikov, A. G., Zabarinskaya, L. P., Rashidov, V. A., and Sergeyeva, N. A., 2014. Geodynamic models of the deep structure beneath the natural disaster regions of active continental margins. Moscow: Scientific World. (in Russian).

Syrbu, N. S., Cuong, D. H., Iakimov, Т. S., Kholmogorov, A. О., Telegin, Y. А., and Tsunogai, U., 2021. Geological features for the formation of gas-geochemical fields, including helium and hydrogen, in the water and sediments at the Vietnamese part of the South-China Sea. Georesursy = Georesources, 23(3), 132–142.

Gresov, A. I., Obzhirov, A. I., Yatsuk, A. V., Mazurov, A. K., and Ruban, A. A., 2017. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea. Rus. J. Paci. Geol., 11(4), 308–314.

Astakhov, A. S., Gusev, E. A., Kolesnik, A. N., and Shakirov, R. B., 2013. Conditions of the accumulation of organic matter and metals in the bottom sediments of the Chukchi Sea. Rus. Geol. Geo., 54(9), 1056–1070. doi: 10.1016/j.rgg.2013.07.019

Savvichev, A., Rusanov, I., and Crane, K., 2004. Distribution of methane in the water column and bottom sediments of the Bering Strait and Chukchi Sea.

Shakirov, R. B., 2018. Gazogeokhimicheskie polya morei Vostochnoi Azii (Gas-Geochemical Fields in Seas of East Asia). Moscow, GEOS, 341.

Downloads

Published

19-08-2022

How to Cite

N. S., S., Nguyen, H., R. B., S., A. O., K. ., A. L., V., Le, D. A., & A. A., L. (2022). Gasgeochemical features in the western part of the East Vietnam Sea (Bien Dong Sea). Vietnam Journal of Marine Science and Technology, 22(3), 231–256. https://doi.org/10.15625/1859-3097/17229

Issue

Section

Articles