Mantle geodynamics and source domain of the East Vietnam Sea opening- induced volcanism in Vietnam and neighboring regions

Nguyen Hoang, Shinjo Ryuichi, Tran Thi Huong, Le Duc Luong, Le Duc Anh
Author affiliations

Authors

  • Nguyen Hoang Institute of Geological Sciences, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Shinjo Ryuichi Department of Physics and Earth Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
  • Tran Thi Huong Institute of Geological Sciences, VAST, Vietnam
  • Le Duc Luong Institute of Geological Sciences, VAST, Vietnam; Graduate University of Science and Technology, VAST, Vietnam
  • Le Duc Anh Graduate University of Science and Technology, VAST, Vietnam; Institute of Marine Geology and Geophysics, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/16856

Keywords:

East Vietnam Sea, syn- and post-spreading basalt, lithospheric mantle, mantle flow.

Abstract

The spreading of the East Vietnam Sea (EVS, also known as Bien Dong, or the South China Sea), leading to the occurrence of syn-spreading (33-16 Ma) and post-spreading (< 16 to present) volcanism. Syn-spreading magma making up thick layers of tholeiitic basalt with a geochemical composition close to the refractory and depleted mid-ocean ridge basalt (MORB) is mainly distributed inside the EVS basin. The post-spreading magma is widely distributed inside the basin and extended to South and SE China, Hainan island, Southern Laos (Bolaven), Khorat Plateau (Thailand), and Vietnam, showing the typical intraplate geochemistry. Basaltic samples were collected at many places in Indochina countries, Vietnam’s coastal and continental shelf areas, to analyze for eruption age, petrographical, geochemical, and isotopic composition to understand the similarities and differences in the mantle sources between regions. The results reveal that basalts from some areas show geochemical features suggesting they were derived subsequently by spinel peridotite and garnet peridotite melting, forming high-Si, low-Mg, and low-Ti tholeiitic basalt to low-Si, high-Mg, and high-Ti alkaline basalt with the trace element enrichment increasing over time. Other basalts have geochemical and isotopic characteristics unchanged over a long period. The post-spreading basalt’s radiogenic Sr-Nd-Hf-Pb isotopic compositions show different regional basalts distribute in the various fields regardless of eruption age, suggesting that their mantle source feature is space-dependent. The post-EVS spreading basalts expose the regional heterogeneity, reflecting the mixture of at least three components, including a depleted mantle (DM) represented by the syn-EVS spreading source, similar to the DUPAL-bearing Indian MORB source; an enriched mantle type 1 (EM1), and type 2 (EM2). The DM may interact and acquire either EM1 or EM2 in the sub-continental lithospheric mantle; as a result, different eruption at different area acquires distinct isotopic signature, reflecting the heterogeneous nature of the subcontinental lithospheric mantle. The study proposes a suitable mantle dynamic model that explains the EVS spreading kinematics and induced volcanism following the India - Eurasian collision from the Eocene based on the research outcomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Trong, T. P., Replumaz, A., and Tapponnier, P., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4), 6683–6732.

Tapponnier, P., Peltzer, G., and Armijo, R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113–157.

Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.

Taylor, B., and Hayes, D. E., 1983. Origin and history of the South China Sea basin. Washington DC American Geophysical Union Geophysical Monograph Series, 27, 23–56.

Briais, A., Patriat, P., and Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328.

Barckhausen, U., Engels, M., Franke, D., Ladage, S., and Pubellier, M., 2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611.

Rangin, C., Huchon, P., Le Pichon, X., Bellon, H., Lepvrier, C., Roques, D., Heo, N. D., and Van Quynh, P., 1995. Cenozoic deformation of central and south Vietnam. Tectonophysics, 251(1-4), 179–196.

Clift, P., Lee, G. H., Anh Duc, N., Barckhausen, U., van Long, H., and Zhen, S., 2008. Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27(3), TC3008.

Shi, H., and Li, C. F., 2012. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea. International Geology Review, 54(15), 1801–1828.

Hayes, D. E., and Nissen, S. S., 2005. The South China sea margins: Implications for rifting contrasts. Earth and Planetary Science Letters, 237(3–4), 601–616.

Pautot, G., and Rangin, C., 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92(1), 57–69.

Ru, K., and Pigott, J. D., 1986. Episodic rifting and subsidence in the South China Sea. AAPG bulletin, 70(9), 1136–1155.

Hall, R., 1996. Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106(1), 153–184.

Lee, T. Y., Lo, C. H., Chung, S. L., Chen, C. Y., Wang, P. L., Lin, W. P., Hoang, N., Chi, C. T., and Yem, N. T., 1998. 40Ar/39Ar dating result of Neogene basalts in Vietnam and its tectonic implication. Mantle Dynamics and Plate Interactions in East Asia, 27, 317–330.

Tu, K., Flower, M. F., Carlson, R. W., Zhang, M., and Xie, G., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology, 19(6), 567–569.

Tu, K., Flower, M. F., Carlson, R. W., Xie, G., Chen, C. Y., and Zhang, M., 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97(1–2), 47–63.

Ho, K. S., Chen, J. C., and Juang, W. S., 2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18(3), 307–324.

Yan, P., Deng, H., Liu, H., Zhang, Z., and Jiang, Y., 2006. The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647–659.

Yan, Q., Shi, X., Wang, K., Bu, W., and Xiao, L., 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Science in China Series D: Earth Sciences, 51(4), 550–566.

Li, C. F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D. K., Wang, J., Song, T., Zhao, J., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W., Almeida, I. H., Huang, X. L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q., Liu, C., Liu, Z., Nagai, R. H., Peleo-Alampay, A., Su, X., Tejada, M. L. G., Trinh, H. S., Yeh, Y. C., Zhang, C., Zhang, F., and Zhang, G. L., 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12), 4958–4983.

Li, C. F., Lin, J., and Kulhanek, D. K., 2015. the Expedition 349 Scientists. 2015b. Proceedings of the International Ocean Discovery Program, 349, 1–43.

Tamaki, K., 1988. Geological structures of the Japan sea and its tectonic implications. Bulletin of the Geological Survey of Japan, 39, 269–365.

Kimura, G., and Tamaki, K., 1986. Collision, rotation, and back‐arc spreading in the region of the Okhotsk and Japan Seas. Tectonics, 5(3), 389–401.

Jolivet, L., Tamaki, K., and Fournier, M., 1994. Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth, 99(B11), 22237–22259.

Kaneoka, I., Notsu, K., Takigami, Y., Fujioka, K., and Sakai, H., 1990. Constraints on the evolution of the Japan Sea based on 40Ar-39Ar ages and Sr isotopic ratios for volcanic rocks of the Yamato Seamount chain in the Japan Sea. Earth and Planetary Science Letters, 97(1–2), 211–225.

Sun, Z., Jian, Z., Stock, J. M., Larsen, H. C., Klaus, A., Alvarez Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., Höfig, T. W., Hsiung, K. H., Huang, B., Huang, E., Huang, X. L., Jiang, S., Jin, H., Johnson, B. G., Kurzawski, R. M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A., Lupi, C., McCarthy, A. J., Mohn, G., Ningthoujam, L. S., Nirrengarten, M., Osono, N., Peate, D. W., Persaud, P., Qiu, N., Robinson, C. M., Satolli, S., Sauermilch, I., Schindlbeck, J. C., Skinner, S. M., Straub, S. M., Su, X., Tian, L., van der Zwan, F. M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Expedition 367/368 methods. Sun, Z., Jian, Z., Stock, JM, Larsen, HC, Klaus, A., Alvarez Zarikian, CA, and the Expedition, 367, 368.

Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., Klaus, A., Alvarez-Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K.., Ding, W., Dorais, M., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A., Hinojosa, J., Höfig, T. W., Hsiung, K. H., Huang, B., Huang, E., Huang, X. L., Jiang, S., Jin, H., Johnson, B. G., Kurzawski, R. M., Lei, C., Li, B., Li, L., Li, Y., Lin, J., Liu, C., Liu, C., Liu, Z., Luna, A. J., Lupi, C., McCarthy, A., Ningthoujam, L., Osono, N., Peate, D. W., Persaud, P., Qiu, N., Robinson, C., Satolli, S., Sauermilch, I., Schindlbeck, J. C., Skinner, S., Straub, S., Su, X., Su, C., Tian, L., van der Zwan, F. M., Wan, S., Wu, H., Xiang, R., Yadav, R., Yi, L., Yu, P. S., Zhang, C., Zhang, J., Zhang, Y., Zhao, N., Zhong, G., and Zhong, L., 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10), 782–789.

Latin, D., and White, N., 1990. Generating melt during lithospheric extension: Pure shear vs. simple shear. Geology, 18(4), 327–331.

White, W. M., Hofmann, A. W., and Puchelt, H., 1987. Isotope geochemistry of Pacific mid‐ocean ridge basalt. Journal of Geophysical Research: Solid Earth, 92(B6), 4881–4893.

Mahoney, J. J., 1988. Deccan traps. In Continental flood basalts (pp. 151–194). Springer, Dordrecht.

Mahoney, J. J., Graham, D. W., Christie, D. M., Johnson, K. T. M., Hall, L. S., and Vonderhaar, D. L., 2002. Between a hotspot and a cold spot: isotopic variation in the Southeast Indian Ridge asthenosphere, 86oE–118oE. Journal of Petrology, 43(7), 1155–1176.

Neal, C. R., Mahoney, J. J., and Chazey III, W. J., 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7), 1177–1205.

Wang, X. J., Wu, M. Q., Liang, D. H., and Yin, A. W., 1984. Some geochemical characteristics of basalts in the South China Sea. Geochimica, (4), 332-340.

Zou, H., Zindler, A., Xu, X., & Qi, Q., 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2), 33-47.

Tejada, M. L. G., Castillo, P., Huang, X. L., and Senda, R., 2017. Geochemistry of the South China Sea basalts. IODP Expedition 349. 3100 Goldschmidt Conference Abstracts Paris Aug. 2017.

Qian, S., Zhou, H., Zhang, L., and Cheng, R., 2020. Mantle heterogeneity beneath the South China Sea: Chemical and isotopic evidence for contamination of ambient asthenospheric mantle. Lithos, 354, 105335.

Flower, M. F., Zhang, M., Chen, C. Y., Tu, K., and Xie, G., 1992. Magmatism in the south China basin: 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology, 97(1–2), 65–87.

Hoang, N., and Flower, M., 1998. Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39(3), 369–395.

Wang, X. C., Li, Z. X., Li, X. H., Li, J., Liu, Y., Long, W. G., Zhou, J. B., and Wang, F., 2012. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?. Journal of Petrology, 53(1), 177–233.

Yan, Q., Shi, X., Metcalfe, I., Liu, S., Xu, T., Kornkanitnan, N., Sirichaiseth, T., Yuan, L., Zhang, Y., and Zhang, H., 2018. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Reports, 8(1), 1–14.

Wang, J. H., Yin, A., Harrison, T. M., Grove, M., Zhang, Y. Q., and Xie, G. H., 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth and Planetary Science Letters, 188(1–2), 123–133.

Hoang, N., Huong, T. T., and Anh, L. D., 2019. Geochemistry and petrology of spinel-lherzolite xenoliths in Cenozoic alkaline basalt in Vietnam: implications for lithospheric mantle source domain. Geology and Metallogeny of Vietnam, Int Symposium, Hanoi March 2019, pp. 77–94, ISBN 978-604-913-809-6.

Ignat’ev, A. V., Velivetskaya, T. A., and Budnitskii, S. Y., 2010. A method for determining argon isotopes in a continuous helium flow for K/Ar geochronology. Journal of Analytical Chemistry, 65(13), 1347–1355.

Bui Thi Sinh, V., Osanai, Y., Lenz, C., Nakano, N., Adachi, T., Belousova, E., and Kitano, I., 2019. Gem-quality zircon megacrysts from placer deposits in the central highlands, Vietnam–potential source and links to Cenozoic Alkali Basalts. Minerals, 9(2), 89.

Hoang, N., and Uto, K., 2006. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’entrapment of Pacific MORB mantle. Earth and Planetary Science Letters, 249(3-4), 229–240.

Hoang, N., Shinjo, R., Huong, T. T., Pécskay, Z., and Bac, D. T., 2019. Pleistocene basaltic volcanism in the Krông Nô area and vicinity, Dak Nong province (Vietnam). Journal of Asian Earth Sciences, 181, 103903.

Zhang, G. L., Luo, Q., Zhao, J., Jackson, M. G., Guo, L. S., and Zhong, L. F., 2018. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, 489, 145–155.

Hoang, N., Hauzenberger, C., Fukuyama, M., and Konzett, J., 2018. Cenozoic volcanism in the Bolaven, Southern Laos. 25th GEOSEA 2018, Hanoi, 16–17 October 2018, pp. 97–98.

Zhou, P., and Mukasa, S. B., 1997. Nd-Sr-Pb isotopic, and major-and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand: sources and petrogenesis. Chemical Geology, 137(3–4), 175–193.

Hoang, N., Flower, M. F., and Carlson, R. W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et cosmochimica Acta, 60(22), 4329–4351.

Hoàng, N., Flower, M. F., Xuân, P. T., Quý, H. V., and Sơn, T. T., 2013. Collision-induced basalt eruptions at Pleiku and Buôn Mê Thuột, south-central Viet Nam. Journal of Geodynamics, 69, 65–83.

Holm, P. M., 2002. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge: results from ODP Leg 176. Chemical Geology, 184(3–4), 195–216.

Hoang, T. H. A., Choi, S. H., Yu, Y., Pham, T. H., Nguyen, K. H., and Ryu, J. S., 2018. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, 296, 382–395.

Hirose, K., and Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477–489.

Kushiro, I., 1996. Partial melting of fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. Geophysical Monograph-American Geophysical Union, 95, 109–122.

Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.

Zindler, A., and Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1), 493–571.

Tatsumoto, M., Basu, A. R., Wankang, H., Junwen, W., and Guanghong, X., 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters, 113(1–2), 107–128.

White, W. M., 2010. Oceanic island basalts and mantle plumes: the geochemical perspective. Annual Review of Earth and Planetary Sciences, 38, 133–160.

Tuzo Wilson, J., 1963. Hypothesis of earth's behaviour. Nature, 198(4884), 925-929.

Hoang, N., and Uto, K., 2003. Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithospheric mantle interaction. Chemical Geology, 198(3–4), 249–268.

Hui, G., Li, S., Li, X., Guo, L., Suo, Y., Somerville, I. D., Zhao, S., Hu, M., Lan, H., and Zhang, J., 2016. Temporal and spatial distribution of Cenozoic igneous rocks in the South China Sea and its adjacent regions: Implications for tectono‐magmatic evolution. Geological Journal, 51, 429–447.

Sun, P., Niu, Y., Guo, P., Chen, S., Duan, M., Gong, H., Wang, X., and Xiao, Y., 2019. Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks. International Geology Review, 61(14), 1768–1785.

Hoang, N., Shakirov, R. B., and Huong, T. T., 2017. Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation. Vietnam Journal of Earth Sciences, 39(3), 270–288.

Putirka, K. D., Perfit, M., Ryerson, F. J., and Jackson, M. G., 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3–4), 177–206.

Anh, L. D., Hoang, N., Phung, V. P., Malinovskii, A. I., Dinh, Q. S., and Shakirov, R. B., 2019. Geochemical features of olivines from Northeastern Phu Quy volcanic island and their relation to melt variations in the magma source. Journal of Geology, series B, (49-50), 1–18.

Robinson, J. A. C., and Wood, B. J., 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters, 164(1–2), 277–284.

Kogiso, T., Hirose, K., and Takahashi, E., 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth and Planetary Science Letters, 162(1–4), 45–61.

Heinonen, J. S., Luttinen, A. V., Riley, T. R., and Michallik, R. M., 2013. Mixed pyroxenite–peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos, 177, 366–380.

Mckenzie, D. A. N., and Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of petrology, 29(3), 625–679.

Johnson, K. T., Dick, H. J., and Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3), 2661–2678.

McKenzie, D. A. N., and O’nions, R. K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5), 1021–1091.

Li, N., Yan, Q., Chen, Z., and Shi, X., 2013. Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf: evidence for Hainan plume. Acta Oceanologica Sinica, 32(12), 40–49.

Yang, F., Huang, X. L., Xu, Y. G., and He, P. L., 2019. Plume-ridge interaction in the South China Sea: Thermometric evidence from Hole U1431E of IODP Expedition 349. Lithos, 324, 466–478.

Xu, Y., Wei, J., Qiu, H., Zhang, H., and Huang, X., 2012. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chinese Science Bulletin, 57(24), 3150–3164.

Kárason, H., and Van Der Hilst, R. D., 2000. Constraints on mantle convection from seismic tomography. Washington DC American Geophysical Union Geophysical Monograph Series, 121, 277–288.

Schellart, W. P., Chen, Z., Strak, V., Duarte, J. C., and Rosas, F. M., 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. Nature communications, 10(1), 1–15.

Zhao, D., Toyokuni, G., and Kurata, K., 2021. Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 225(1), 572–588.

Jolivet, L., Faccenna, C., Becker, T., Tesauro, M., Sternai, P., and Bouilhol, P., 2018. Mantle flow and deforming continents: From India‐Asia convergence to Pacific subduction. Tectonics, 37(9), 2887–2914.

Li, L., and Clift, P. D., 2013. The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Research, 34(3), 341–365.

Flower, M., Tamaki, K., and Hoang, N., 1998. Mantle Extrusion: A Model for Dispersed Volcanism and Dupal‐Like Asthenosphere in East Asia and the Western Pacific. Mantle Dynamics and Plate Interactions in East Asia, 27, 67–88.

Downloads

Published

31-12-2021

How to Cite

Nguyen, H., Shinjo, R., Tran , T. H., Le, D. L., & Le, D. A. (2021). Mantle geodynamics and source domain of the East Vietnam Sea opening- induced volcanism in Vietnam and neighboring regions. Vietnam Journal of Marine Science and Technology, 21(4), 393–417. https://doi.org/10.15625/1859-3097/16856

Issue

Section

Review

Most read articles by the same author(s)