INITIAL APPLICATION OF NONLINEAR REGRESSION MODELS TO ASSESS BIOLOGICAL SELF-PURIFICATION CAPACITY IN VUNG RO BAY (PHU YEN)
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/18/4A/13641Keywords:
Biological self-purification capicity, biodegradation of organic matter, nutrient assimilation, nonlinear regression models.Abstract
The self-purification of waters is a complex process, including physical, biological and chemical processes. Based on experimental data in May 2014 and December 2014 in Vung Ro bay (Phu Yen), this paper assesses biological self-purification capicity through the biodegradation of organic matter and nutrient assimilation. The capacity of biodegradation of organic matter is represented by nonlinear regression models of the relationship between BOD and decay time: model of Streeter - Phelps, Young and Clark (1965); Mason et al., (2006). The capacity of nutrient assimilation is represented by the nonlinear regression models of the relationship between photosynthesis and irradiance: Model of Webb et al., (1974); Platt et al., (1980); Eilers and Peeters (1988). Using the least squares method on the nonlinear regression model, the parameters characterizing the self purification process in Vung Ro waters were identified. The study results indicated that the rate of organic biodegradation in Vung Ro waters was 0.1073 ± 0.0781 days-1 (with RMSE = 0.0663 ± 0.0386); the half-time of decay was about 6 days. The maximum intensity of photosynthesis in Vung Ro waters was 57.6881 ± 25.2211 mgC (mgChal)-1h-1 (with RMSE = 3.5900 ± 2.2170); maximum nutrient assimilation of phytoplankton was 9.1719 ± 3.5962 mgN/m3/h and 1.2693 ± 0.4977 mgP/m3/h.Downloads
Metrics
References
Nguyễn Hữu Huân, Nguyễn Trịnh Đức Hiệu, 2017. Năng suất sinh học sơ cấp của thực vật nổi và một số yếu tố sinh thái liên quan ở vực nước Vũng Rô (Phú Yên). Tạp chí Sinh học, 39(1), 40–50. DOI: https://doi.org/10.55401/jst.v1i4.194
Streeter, H. W., and Phelps, E. B., 1925. A Study of the Pollution and Natural Purification of the Ohio River, III, Factors Concerned in the Phenomena of Oxidation and Reaeration. US Public Health Service. Public Health Bulletin, 146, 75.
Moore, E. W., Thomas, H. A., Snow, W. B., and Ruchhoft, C. C., 1950. Simplified method for analysis of BOD data [with discussion]. Sewage and Industrial Wastes, 1343–1355.
Thomas Jr, A. H., 1950. Graphical determination of BOD curve constants. Water & Sewage Works, 97, 123–124.
Navone, R., 1960. A new method for calculating K and L for sewage. Water and Sewage Works, 107, 285–286.
Fujimoto, Y., 1964. Graphical use of first stage BOD equation. Journal of Water Pollution Control Federation, 36(1), 69–71.
Hewitt, J., Hunter, J. V., and Lockwood, D., 1979. A multiorder approach to BOD kinetics. Water Research, 13(3), 325–329. DOI: https://doi.org/10.1016/0043-1354(79)90213-6
Adrian, D. D., and Sanders, T. G., 1992. Oxygen sag equation for half order BOD kinetics. Journal of Environmental Systems, 22(4), 341–351. DOI: https://doi.org/10.2190/NWEG-JAU3-XDHD-D0J9
Young, J. C., and Clark, J. W., 1965. Second order equation for BOD. Journal of the Sanitary Engineering Division, 91(1), 43–58. DOI: https://doi.org/10.1061/JSEDAI.0000532
Adrian, D. D., and Sanders, T. G., 1998. Oxygen sag equation for second-order BOD decay. Water Research, 32(3), 840–848. DOI: https://doi.org/10.1016/S0043-1354(97)00259-5
Borsuk, M. E., and Stow, C. A., 2000. Bayesian parameter estimation in a mixed-order model of BOD decay. Water Research, 34(6), 1830–1836. DOI: https://doi.org/10.1016/S0043-1354(99)00346-2
Mason, I. G., McLachlan, R. I., and Gérard, D. T., 2006. A double exponential model for biochemical oxygen demand. Bioresource Technology, 97(2), 273–282. DOI: https://doi.org/10.1016/j.biortech.2005.02.042
Webb, W. L., Newton, M., and Starr, D., 1974. Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologia, 17(4), 281–291. DOI: https://doi.org/10.1007/BF00345747
Jassby, A. D., and Platt, T., 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540–547. DOI: https://doi.org/10.4319/lo.1976.21.4.0540
Platt, T., Gallegos, C. L., and Harrison, W. G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research (USA), 38, 687–701.
Eilers, P. H. C., and Peeters, J. C. H., 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3-4), 199–215. DOI: https://doi.org/10.1016/0304-3800(88)90057-9
Archontoulis, S. V., and Miguez, F. E., 2015. Nonlinear regression models and applications in agricultural research. Agronomy Journal, 107(2), 786–798. DOI: https://doi.org/10.2134/agronj2012.0506
TCVN_5998:1995. Chất lượng nước - lấy mẫu - hướng dẫn lấy mẫu nước biển.
Clesceri, L. S., Greenberg, A. E., Eaton, A. D., Rice, E. W., and Franson, M. A. H., 2005. Standard methods for the examination of water and wastewater (No. 628.161 S7/2005). American Public Health Association, Washington, DC.
Mackey, D. J., Parslow, J. S., Griffiths, F. B., Higgins, H. W., & Tilbrook, B. (1997). Phytoplankton productivity and the carbon cycle in the western Equatorial Pacific under El Niño and non-El Niño conditions. Deep Sea Research Part II: Topical Studies in Oceanography, 44(9–10), 1951–1978. DOI: https://doi.org/10.1016/S0967-0645(97)00033-7
Phan Minh Thụ, Tôn Nữ Mỹ Nga, 2015. Khả năng tự làm sạch sinh học và lý học của nước đầm Thủy Triều, Khánh Hòa, Tạp chí Khoa học - Công nghệ thủy sản, 57–62.
Đặng Ngọc Thanh, Nguyễn Trọng Nho, 1983. Năng suất sinh học vực nước. Nxb. Khoa học và Kỹ thuật, Hà Nội. 145 tr.
Parsons, T. R., Maita, Y., and Lalli, C. M., 1984. Manual of chemical and biological methods for seawater analysis. In Manual of chemical and biological methods for seawater analysis. Pergamon Press. 173 p.
Madsen, K., Nielsen, H. B., and Tingleff, O., 2004. Methods for non-linear least squares problems, Informatics and Mathematical Modeling, Technical University of Denmark. URL Available online: http://www. imm. dtu. dk.
R Development Core Team, R. F. F. S. C., 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Bloomfield, V. A., 2014. Using R for numerical analysis in science and engineering. Chapman and Hall/CRC. DOI: https://doi.org/10.1201/b16841
Chai, T., and Draxler, R. R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. DOI: https://doi.org/10.5194/gmd-7-1247-2014
Mangiafico, S. S., 2015. An R Companion for the Handbook of Biological Statistics, Version 1.09 c, 274 p. Web version: rcompanion.org/rcompanion.
Fox, J., and Weisberg, S., 2010. Nonlinear regression and nonlinear least squares in R: An appendix to an R companion to applied regression. Retrieved from McMaster University: http://socserv. mcmaster. ca/jfox/Books/Companion/ap-pendix/Appendix-Nonlinear-Regression. pdf.
Nguyễn Tác An, Lê Lan Hương, Phan Minh Thụ, 1999. Sơ bộ đánh giá khả năng tự làm sạch ở vực nước ven bờ Nha Trang. Tuyển tập Nghiên cứu biển, 9, 123–136.
Phan Minh Thụ, Tôn Nữ Mỹ Nga, Nguyễn Thị Miền, 2014. Đánh giá mức độ phân rã hữu cơ sinh học ở Cửa Bé - Khánh Hòa. Tạp chí Khoa học và Công nghệ Thủy sản, (2), 57–61.
Phan Minh Thụ, Nguyễn Hữu Huân, Lê Trần Dũng, Lê Trọng Dũng, Võ Hải Thi, Lê Hoài Hương, Hoàng Trung Du và Trần Thị Minh Huệ, 2012. Chỉ số đồng hóa của thực vật nổi ở Cửa Bé (Nha Trang). Tuyển tập Nghiên cứu biển, 18, 79–88.