Vol. 27 No. 3 (2017)
Papers

Fabrication and Magnetic Properties of Sintered SrFe\(_{12}\)O\(_{19}\)-NiFe\(_{2}\)O\(_{4}\) Nanocomposites

Tran Thi Viet Nga
International Training Institute for Materials Science (ITIMS) Hanoi University of Technology, 01 Dai Co Viet Street, Hanoi, Vietnam
To Thanh Loan
International Training Institute for Materials Science (ITIMS) Hanoi University of Technology, 01 Dai Co Viet Street, Hanoi, Vietnam

Published 18-11-2017

How to Cite

Nga, T. T. V., & Loan, T. T. (2017). Fabrication and Magnetic Properties of Sintered SrFe\(_{12}\)O\(_{19}\)-NiFe\(_{2}\)O\(_{4}\) Nanocomposites. Communications in Physics, 27(3), 255. https://doi.org/10.15625/0868-3166/27/3/9647

Abstract

Two series of SrFe\(_{12}\)O\(_{19}\)/NiFe\(_{2}\)O\(_{4}\) nanocomposite ferrites sintered in air at 850\rc{}C and 950\rc{}C were prepared using SrFe$_{12}$O$_{19}$ and NiFe\(_{2}\)O\(_{4}\) nanopowders obtained via sol-gel method. The phase composition, surface morphology and magnetic properties of the composites were investigated using XRD, SEM and VSM respectively. For the SrFe$_{12}$O$_{19}$/NiFe$_{2}$O$_{4}$ ferrites with volume ratio ranging from 61 to 21 and sintered in 850\(\r{}\)C for 5 hours in air, all the specimens are composed of two phases but exhibit a typical single-phase magnetic behavior, indicating the existence of exchange coupling (EC) between the magnetically hard and soft phases. The value of coercivity H\(_{c}\) decreases from 6.19 kOe to 0.574 kOe when volume of SrFe$_{12}$O$_{19}$ decreases from 6 to 1. While the samples with a mass ratio of \(R_{m}\)= SrFe\(_{12}\)O\(_{19}\)/ NiFe\(_{2}\)O\(_{4}\) varying from 31 to 13 sintered in 950\rc{}C for 5 hours characterized with a ``bee waist'' type hysteresis loop. These results reveal that the magnetically hard and soft magnetic phases are not exchange- coupled. The saturation magnetization (\(M_{S}\)) increases from 36 emu/g to 43.3 emu/g when \(R_{m}\) decreases from 31 to 13 and then decreases with \(R_{m}= 12\) and 13.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. M. A. Moskalenko, V.M. Uzdin, H. Zabel, J. Appl. Phys. 115 (2014) 053913.
  2. T. Nakamura, J. Appl. Phys. 88 (2000) 348.
  3. X.F. Pan, J.X. Qiu, M.Y. Gu, J. Mater. Sci. 42 (2007) 2086
  4. M.A. Moskalenko, V.M. Uzdin, H. Zabel, J. Appl. Phys. 115 (2014) 053913.
  5. A.L. Xia, C.H. Zuo, L. Chen, C.G. Jin, Y.H. Lv, J. Magn. Magn. Mater. 332 (2013) 186-191.
  6. A.L. Xia, X.Z. Hu, D.K. Li, L. Chen, C.G. Jin, C.H. Zuo, S.B. Su, Electron. Mater. Lett. 10 (2014) 423-426.
  7. B.N. Pianciola, E. Lima Jr., H.E. Troiani, L.C.C.M. Nagamine, R. Cohen, R.D. Zysler, J. Magn. Magn. Mater. 377 (2015) 44-51.
  8. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D.J. Djayaprawira, M. Takahashi, R.J. Joseyphus, A. Narayanasamy, Appl. Phys. Lett. 83 (2003) 2862-2864.
  9. Moon K W, Cho S G, Choa Y H, Kim K H and Kim J, Phys. Status Solidi a 204 (2007) 4141.
  10. M.A. Radmanesh, S.A.S. Ebrahimi, J. Magn. Magn. Mater. 324 (2012) 3094.
  11. D. Roy, P.S.A. Kumara, J. Appl. Phys. 106 (2009) 073902 .
  12. L.Y. Zhang, Z.W. Li, J. Alloys Compd. 469 (2009) 422.
  13. Haibo Yang, Miao Liu, Ying Lin, Guoqiang Dong, Lingyan Hu, Ying Zhang, Jingyi Tan, Materials Chemistry and Physics 160 (2015) 5-11
  14. Y.H. Liu, S.G.E.T. Velthuis, J.S. Jiang, Y. Choi, S.D. Bader, A.A. Parizzi, H. Ambaye, V. Lauter, Phys.Rev. B 83 (2011) 174418.
  15. M.K. Ray, K. Bagani, S. Banerjee, J. Alloys. Compd. 600 (2014) 55-59.
  16. H. Zeng, S.H. Sun, J. Li, Z.L. Wang, J.P. Liu, Appl. Phys. Lett. 85 (2004) 792.