Core/shell CoFe\(_{2}\)O\(_{4}\)/Fe\(_{3}\)O\(_{4}\) nanoparticles: effects of hard/soft magnetic weight fraction on structure, particle size and magnetic properties
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17312Keywords:
nanocomposite, core- shell, exchange- springAbstract
CoFe\(_{2}\)O\(_{4}\)/Fe\(_{3}\)O\(_{4}\) nanocomposite particles were synthesized by using co-precipitation combined with hydrothermal methods. The phase composition, surface morphology and magnetic properties of the nanocomposites were investigated using X- ray diffraction, scanning electron microscopy and vibrating sample magnetometer. Findings show that the samples comprise two phases, and Fe\(_{3}\)O\(_{4}\) particles are coated on the surface of CoFe\(_{2}\)O\(_{4}\) particles. The average particle size of CoFe\(_{2}\)O\(_{4}\) was ditrisbuted in the range of 50 -- 100 nm. While the particle of Fe\(_{3}\)O\(_{4}\) displayed a spherical shape and particle size distributed from 10 -- 20 nm. The MS of CoFe\(_{2}\)O\(_{4}\)@Fe\(_{3}\)O\(_{4}\) core–shell particles increase with the decrease in the mass ratio of hard to soft ferrites. The structure, magnetic properties and the degree of exchange coupling between the magnetic phases were investigated.
Downloads
Metrics
References
D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, Submicrometer ferromagnetic NOT gate and shift register, Science 296 (2006) 2003. DOI: https://doi.org/10.1126/science.1070595
F. Yi, Magnetic properties of hard (CoFe2O4)-soft (Fe3O4) composite ceramics, Ceram. Int. 40 (2014) 7837. DOI: https://doi.org/10.1016/j.ceramint.2013.12.128
J. Jin, X. Sun, M. Wang, Z. L. Ding and Y. Q. Ma, The magnetization reversal in CoFe2O4/CoFe2 granular systems, J. Nanoparticle Res. 18 (2016) 2. DOI: https://doi.org/10.1007/s11051-016-3690-9
K. Simeonidis, C. Martinez-Boubeta, D. Serantes, S. Ruta, O. Chubykalo-Fesenko, R. Chantrell, J. Or´o-Sol´e, Ll. Balcells, A.S. Kamzin, R.A. Nazipov, A. Makridis and M. Angelakeris, Controlling magnetization reversal and hyperthermia efficiency in core-shell iron-iron oxide magnetic nanoparticles by tuning the interphase coupling, ACS Appl. Nano Mater. 3 (2020) 4465. DOI: https://doi.org/10.1021/acsanm.0c00568
A. L´opez-Ortega, M. Estrader, G. Salazar-Alvarez, A. G. Roca and J. Nogu´es, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep. 553 (2015) 1. DOI: https://doi.org/10.1016/j.physrep.2014.09.007
Renuka Tayade, Theoretical and experimental contribution to the study of exchange-spring magnets, Materials Science [cond-mat.mtrl-sci]. ´ Ecole normale sup´erieure de Cachan - ENS Cachan, 2014.
G. Du and S. Wang, Synthesis of magnetically exchange coupled CoFe2O4/CoFe2 core/shell composite particles through spray pyrolysis, J. Alloys. Comp. 708 (2017) 600. DOI: https://doi.org/10.1016/j.jallcom.2017.03.037
M. Abbas, M. N. Islam, B. Parvatheeswara Rao, K. E. Abou Aitah and C. Kim, Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures, Mater. Lett. 139 (2015) 161. DOI: https://doi.org/10.1016/j.matlet.2014.10.078
J. H. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh, J. Kim, J. G. Kim, L. S. Kim, K. I. Park and J. Cheon, Exchangecoupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6 (2011) 418. DOI: https://doi.org/10.1038/nnano.2011.95
H. Xianghui and C. Zhenhua, Preparation and characteriza- nanocomposites, 51 (2006) 2529. DOI: https://doi.org/10.1007/s11434-006-2149-2
T. T. V. Nga and N. T. Lan, Fabrication and exchange-spring properties of SrFe12O19@ Fe3O4 nanocomposites with core-shell structure, Mater. Chem. Phys. 251 (2020) 123084. DOI: https://doi.org/10.1016/j.matchemphys.2020.123084
F. Liu, Y. Hou and S. Gao, Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications, Chem. Soc. Rev. 43 (2014) 8098. DOI: https://doi.org/10.1039/C4CS00162A
A. M. Belemuk and S. T. Chui, Finite temperature performance of hard-soft composite nanomagnets and its dependence on geometry structure of composites, J. Appl. Phys. 113 (2013) 4788703. DOI: https://doi.org/10.1063/1.4788703
J. Robles, R. Das, M. Glassell, M. H. Phan and H. Srikanth, Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia, AIP Adv. 8 (2018) 007249. DOI: https://doi.org/10.1063/1.5007249
Shabab Torkian, Ali Ghasemi and Reza Shoja Razavi, Magnetic properties of hard-soft SrFe10Al2O19/Co0:8Ni0:2Fe2O4 ferrite synthesized by one-pot sol–gel auto-combustion, J. Magn. Magn. Mater. 416 (2016) 408. DOI: https://doi.org/10.1016/j.jmmm.2016.05.050
A. Xia, S. Ren, J. Lin, Yue Ma, C. Xu, J. Li, C. Jin, X. Liu, Magnetic properties of sintered SrFe12O19-CoFe2O4 nanocomposites with exchange coupling, J. Alloys. Comp. 653 (2015) 108. DOI: https://doi.org/10.1016/j.jallcom.2015.08.252
C. Borgohain and J. P. Borah, CoFe2O4-Fe3O4 bimagnetic heterostructure: A versatile core-shell nanoparticle with magnetically recoverable photocatalytic and self heating properties, Mater. Res. Express. 7 (2020) 2053. DOI: https://doi.org/10.1088/2053-1591/ab6493
A. S. Teja and P. Y. Koh, Synthesis, properties and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth. Charact. Mater. 55 (2009) 22. DOI: https://doi.org/10.1016/j.pcrysgrow.2008.08.003
R. H. Kodama and A. E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B 59 (1999) 6321. DOI: https://doi.org/10.1103/PhysRevB.59.6321
V. M. Chakka, Z. S. Shan and J. P. Liu, Effect of coupling strength on magnetic properties of exchange spring magnets, J. Appl. Phys. 94 (2003) 6673. DOI: https://doi.org/10.1063/1.1621712
K. P. Remya, D. Prabhu, S. Amirthapandian, C. Viswanathan and N. Ponpandian, Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites, J. Magn. Magn. Mater. 406 (2016) 233. DOI: https://doi.org/10.1016/j.jmmm.2016.01.024
J. E. Davies, O. Hellwig, E. Fullerton, J. S. Jiang, S. D. Bader, G. T. Zim´anyi and K. Liu, Anisotropy dependence of irreversible switching in Fe/SmCo and FeNi/FePt exchange spring magnet films, Appl. Phys. Lett. 86 (2005) 1. DOI: https://doi.org/10.1063/1.1954898
J. Liang, X. Wu, W. Wu, L. Chen, Y. Huang and Y. Huang, Improved magnetic properties of Sr0:93Sm0:10Fe11:97O19/Fe3O4 composite powders by substitution of Sm and magnetic exchange coupling effect, J. Mater. Sci. 31 (2020) 20400. DOI: https://doi.org/10.1007/s10854-020-04559-1
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 17-10-2022
Published 21-02-2023