Core/shell CoFe\(_{2}\)O\(_{4}\)/Fe\(_{3}\)O\(_{4}\) nanoparticles: effects of hard/soft magnetic weight fraction on structure, particle size and magnetic properties

Tran Thi Viet Nga, Chu Manh Hung, Truong Tien Hoang Duong
Author affiliations

Authors

  • Tran Thi Viet Nga International Training Institute for Materials Science (ITIMS) Hanoi University of Technology, 01 Dai Co Viet Street, Hanoi, Vietnam
  • Chu Manh Hung International Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Vietnam https://orcid.org/0000-0003-0813-1956
  • Truong Tien Hoang Duong International Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Vietnam https://orcid.org/0000-0003-4952-0405

DOI:

https://doi.org/10.15625/0868-3166/17312

Keywords:

nanocomposite, core- shell, exchange- spring

Abstract

CoFe\(_{2}\)O\(_{4}\)/Fe\(_{3}\)O\(_{4}\) nanocomposite particles were synthesized by using co-precipitation combined with hydrothermal methods. The phase composition, surface morphology and magnetic properties of the nanocomposites were investigated using X- ray diffraction, scanning electron microscopy and vibrating sample magnetometer. Findings show that the samples comprise two phases, and Fe\(_{3}\)O\(_{4}\) particles are coated on the surface of CoFe\(_{2}\)O\(_{4}\) particles. The average particle size of CoFe\(_{2}\)O\(_{4}\) was ditrisbuted in the range of 50 -- 100 nm. While the particle of Fe\(_{3}\)O\(_{4}\) displayed a spherical shape and particle size distributed from 10 -- 20 nm. The MS of CoFe\(_{2}\)O\(_{4}\)@Fe\(_{3}\)O\(_{4}\) core–shell particles increase with the decrease in the mass ratio of hard to soft ferrites. The structure, magnetic properties and the degree of exchange coupling between the magnetic phases were investigated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, Submicrometer ferromagnetic NOT gate and shift register, Science 296 (2006) 2003. DOI: https://doi.org/10.1126/science.1070595

F. Yi, Magnetic properties of hard (CoFe2O4)-soft (Fe3O4) composite ceramics, Ceram. Int. 40 (2014) 7837. DOI: https://doi.org/10.1016/j.ceramint.2013.12.128

J. Jin, X. Sun, M. Wang, Z. L. Ding and Y. Q. Ma, The magnetization reversal in CoFe2O4/CoFe2 granular systems, J. Nanoparticle Res. 18 (2016) 2. DOI: https://doi.org/10.1007/s11051-016-3690-9

K. Simeonidis, C. Martinez-Boubeta, D. Serantes, S. Ruta, O. Chubykalo-Fesenko, R. Chantrell, J. Or´o-Sol´e, Ll. Balcells, A.S. Kamzin, R.A. Nazipov, A. Makridis and M. Angelakeris, Controlling magnetization reversal and hyperthermia efficiency in core-shell iron-iron oxide magnetic nanoparticles by tuning the interphase coupling, ACS Appl. Nano Mater. 3 (2020) 4465. DOI: https://doi.org/10.1021/acsanm.0c00568

A. L´opez-Ortega, M. Estrader, G. Salazar-Alvarez, A. G. Roca and J. Nogu´es, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep. 553 (2015) 1. DOI: https://doi.org/10.1016/j.physrep.2014.09.007

Renuka Tayade, Theoretical and experimental contribution to the study of exchange-spring magnets, Materials Science [cond-mat.mtrl-sci]. ´ Ecole normale sup´erieure de Cachan - ENS Cachan, 2014.

G. Du and S. Wang, Synthesis of magnetically exchange coupled CoFe2O4/CoFe2 core/shell composite particles through spray pyrolysis, J. Alloys. Comp. 708 (2017) 600. DOI: https://doi.org/10.1016/j.jallcom.2017.03.037

M. Abbas, M. N. Islam, B. Parvatheeswara Rao, K. E. Abou Aitah and C. Kim, Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures, Mater. Lett. 139 (2015) 161. DOI: https://doi.org/10.1016/j.matlet.2014.10.078

J. H. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh, J. Kim, J. G. Kim, L. S. Kim, K. I. Park and J. Cheon, Exchangecoupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6 (2011) 418. DOI: https://doi.org/10.1038/nnano.2011.95

H. Xianghui and C. Zhenhua, Preparation and characteriza- nanocomposites, 51 (2006) 2529. DOI: https://doi.org/10.1007/s11434-006-2149-2

T. T. V. Nga and N. T. Lan, Fabrication and exchange-spring properties of SrFe12O19@ Fe3O4 nanocomposites with core-shell structure, Mater. Chem. Phys. 251 (2020) 123084. DOI: https://doi.org/10.1016/j.matchemphys.2020.123084

F. Liu, Y. Hou and S. Gao, Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications, Chem. Soc. Rev. 43 (2014) 8098. DOI: https://doi.org/10.1039/C4CS00162A

A. M. Belemuk and S. T. Chui, Finite temperature performance of hard-soft composite nanomagnets and its dependence on geometry structure of composites, J. Appl. Phys. 113 (2013) 4788703. DOI: https://doi.org/10.1063/1.4788703

J. Robles, R. Das, M. Glassell, M. H. Phan and H. Srikanth, Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia, AIP Adv. 8 (2018) 007249. DOI: https://doi.org/10.1063/1.5007249

Shabab Torkian, Ali Ghasemi and Reza Shoja Razavi, Magnetic properties of hard-soft SrFe10Al2O19/Co0:8Ni0:2Fe2O4 ferrite synthesized by one-pot sol–gel auto-combustion, J. Magn. Magn. Mater. 416 (2016) 408. DOI: https://doi.org/10.1016/j.jmmm.2016.05.050

A. Xia, S. Ren, J. Lin, Yue Ma, C. Xu, J. Li, C. Jin, X. Liu, Magnetic properties of sintered SrFe12O19-CoFe2O4 nanocomposites with exchange coupling, J. Alloys. Comp. 653 (2015) 108. DOI: https://doi.org/10.1016/j.jallcom.2015.08.252

C. Borgohain and J. P. Borah, CoFe2O4-Fe3O4 bimagnetic heterostructure: A versatile core-shell nanoparticle with magnetically recoverable photocatalytic and self heating properties, Mater. Res. Express. 7 (2020) 2053. DOI: https://doi.org/10.1088/2053-1591/ab6493

A. S. Teja and P. Y. Koh, Synthesis, properties and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth. Charact. Mater. 55 (2009) 22. DOI: https://doi.org/10.1016/j.pcrysgrow.2008.08.003

R. H. Kodama and A. E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B 59 (1999) 6321. DOI: https://doi.org/10.1103/PhysRevB.59.6321

V. M. Chakka, Z. S. Shan and J. P. Liu, Effect of coupling strength on magnetic properties of exchange spring magnets, J. Appl. Phys. 94 (2003) 6673. DOI: https://doi.org/10.1063/1.1621712

K. P. Remya, D. Prabhu, S. Amirthapandian, C. Viswanathan and N. Ponpandian, Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites, J. Magn. Magn. Mater. 406 (2016) 233. DOI: https://doi.org/10.1016/j.jmmm.2016.01.024

J. E. Davies, O. Hellwig, E. Fullerton, J. S. Jiang, S. D. Bader, G. T. Zim´anyi and K. Liu, Anisotropy dependence of irreversible switching in Fe/SmCo and FeNi/FePt exchange spring magnet films, Appl. Phys. Lett. 86 (2005) 1. DOI: https://doi.org/10.1063/1.1954898

J. Liang, X. Wu, W. Wu, L. Chen, Y. Huang and Y. Huang, Improved magnetic properties of Sr0:93Sm0:10Fe11:97O19/Fe3O4 composite powders by substitution of Sm and magnetic exchange coupling effect, J. Mater. Sci. 31 (2020) 20400. DOI: https://doi.org/10.1007/s10854-020-04559-1

Downloads

Published

21-02-2023

How to Cite

[1]
T. T. V. Nga, C. M. Hung and T. T. H. Duong, Core/shell CoFe\(_{2}\)O\(_{4}\)/Fe\(_{3}\)O\(_{4}\) nanoparticles: effects of hard/soft magnetic weight fraction on structure, particle size and magnetic properties, Comm. Phys. 33 (2023) 41. DOI: https://doi.org/10.15625/0868-3166/17312.

Issue

Section

Papers
Received 13-07-2022
Accepted 17-10-2022
Published 21-02-2023