Influence of Disulfide Bridge on the Structural Stability of Human Neuroglobin: A Molecular Dynamics Simulation Using Latest Data Entry

Bui Thi Le Quyen, Nguyen Thi Lam Hoai, Ngo Van Thanh
Author affiliations

Authors

  • Bui Thi Le Quyen Thai Binh University of Medicine and Pharmacy, 373 Ly Bon, Thai Binh, Vietnam.
  • Nguyen Thi Lam Hoai Institute of Physics, Vietnam Academy of Science and Technology
  • Ngo Van Thanh Institute of Physics, VAST

DOI:

https://doi.org/10.15625/0868-3166/26/2/8618

Keywords:

molecular dynamics simulation, neuroglobin, crystal structure of protein

Abstract

In this paper, we investigated the role of the disulfide bridge in the structural stability of wild-type human neuroglobin. The classical simulation of the neuroglobin without the disulfide bridge was performed for a long simulation run of 240~ns   using a new parameter set of Gromos96 force field and the latest data entry as the initial topologies. We used the analyzed data of original neuroglobin with the remained disulfide bridge to compare to the ones from this simulation. Our results showed that, the structure of neuroglobin was still very stable although the disulfide bridge was absent. There was only a few residues in B and C helices having a higher mobility. The most interesting result we obtained was that the increasing distance between the distal histidine and heme group could allow oxygen to bind more easily.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. Burmester, B. Weich, S. Reinhardt, and T. Hankeln, Nature 407 (2000) 520. DOI: https://doi.org/10.1038/35035093

M. Brunori and B. Vallone, FASEB J. 20 (2006) 2192. DOI: https://doi.org/10.1096/fj.06-6643rev

M. Brunori and B. Vallone, Cell. Mol. Life Sci. 64 (2007) 1259. DOI: https://doi.org/10.1007/s00018-007-7090-2

K. Nienhaus and G. U. Nienhaus, IUBMB Life 59 (2007) 490. DOI: https://doi.org/10.1080/15216540601188538

T. Burmester and T. Hankeln, J. Exp. Biol. 212 (2009) 1423. DOI: https://doi.org/10.1242/jeb.000729

S. Dewilde, L. Kiger, T. Burmester, T. Hankeln, V. Baudin-Creuza, T. Aerts, M. C. Marden, R. Caubergs and L.

Moens, J. Biol. Chem. 276 (2001) 38949. DOI: https://doi.org/10.1074/jbc.M106438200

A. Pesce, S. Dewilde, M. Nardini, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester, and M. Bolognesi, Structure

(2003) 1087-1095.

A. Pesce, S. Dewilde, M. Nardini, S. Dewilde, L. Moens, T. Hankeln, T. Burmester, P. Ascenzi and M. Bolognesi,

IUBMB Life 56 (2004) 657.

B.Vallone, K. Nienhaus, M. Brunori, and G. U. Nienhaus, Proteins 56 (2004) 85-92. DOI: https://doi.org/10.1002/prot.20113

A. Bocahut, S. Bernad, P. Sebban and S. Sacquin-Mora, J. Phys Chem B 113 (2009) 16257. DOI: https://doi.org/10.1021/jp906854x

F. Hoppe-Seyler, U¨ ber die oxydation in lebendem blute Med-chem Untersuch Lab 1 (1866) 133.

M. Brunori, Rend. Fis. Acc. Lincei 21 (2010) 335. DOI: https://doi.org/10.1007/s12210-010-0088-y

N. Kawada, D. B. Kristensen, K. Asahina, K. Nakatani, Y. Minamiyama, S. Seki and K. Yoshizato, The Journal

of Biological Chemistry 276 (2001) 25318. DOI: https://doi.org/10.1074/jbc.M102630200

T. Burmester, B. Ebner, B. Weich and T. Hankeln, Molecular Biology and Evolution 19 (2002) 416. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004096

D. Hamdane et al., J. Biol. Chem. 278 (2003) 51713.

D. Hamdane, L. Kiger, S. Dewilde, B.N. Green, A. Pesce, J. Uzan, T. Burmester, T. Hankeln, M. Bolognesi, L.

Moens and M.C. Marden, Micron 35 (2004) 59. DOI: https://doi.org/10.1016/j.micron.2003.10.019

E. Vinck, S. Van Doorslaer, S. Dewilde and L. Moens, J. Am. Chem. Soc. 126 (2004) 4516. DOI: https://doi.org/10.1021/ja0383322

L. Astudillo, S. Bernad, V. Derrien, P. Sebban and J. Miksovska, Biophys. J. 99 (2010) L16-L18. DOI: https://doi.org/10.1016/j.bpj.2010.04.033

D. Hamdane et. al., J. Biol. Chem. 278 (2003) 51713. DOI: https://doi.org/10.1074/jbc.M309396200

B. G. Guimar˜aes, D. Hamdane, C. Lechauve, M. C. Marden and B. Golinelli-Pimpaneau, Acta Cryst. D 70

(2014) 1005.

N. Guex and M.C. Peitsch, Electrophoresis 18 (1997) 2714. DOI: https://doi.org/10.1002/elps.1150181505

W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 14 (1996) 33-38. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

S. Pronk, S. P´all, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson,

D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29(7), 845854 (2013); M.J. Abraham, D. van der

Spoel, E. Lindahl, B. Hess, and the GROMACS development team, ”GROMACS User Manual version 5.1”,

www.gromacs.org (2015).

N. Schmid, A.P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A.E. Mark and W.F. van Gunsteren, Eur.

Biophys. J. 40 (2011) 843-856. DOI: https://doi.org/10.1007/s00249-011-0700-9

H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91 (1987) 62696271. DOI: https://doi.org/10.1021/j100308a038

Downloads

Published

22-09-2016

How to Cite

[1]
B. T. L. Quyen, N. T. L. Hoai, and N. V. Thanh, “Influence of Disulfide Bridge on the Structural Stability of Human Neuroglobin: A Molecular Dynamics Simulation Using Latest Data Entry”, Comm. Phys., vol. 26, no. 2, p. 151, Sep. 2016.

Issue

Section

Papers
Received 17-08-2016
Published 22-09-2016

Most read articles by the same author(s)