Vol. 25 No. 4 (2015)
Papers

Inverted neutrino mass hierarchy and mixing in the Zee-Babu model

Published 25-03-2016

Keywords

  • neutrino mass and mixing,
  • non-standard-model neutrinos,
  • Zee-Babu model

How to Cite

Vien, V. V., Long, H. N., & Thu, P. N. (2016). Inverted neutrino mass hierarchy and mixing in the Zee-Babu model. Communications in Physics, 25(4), 291. https://doi.org/10.15625/0868-3166/25/4/7651

Abstract

We show that the neutrino mass matrix of the Zee-Babu model isable to fit the recent data on neutrino masses and mixingwith non-zero $\theta_{13}$ in the inverted neutrino mass hierarchy. The results show that the Majorana  phases are equal to zero and the Dirac phase ($\de$) ispredicted to either $0$ or $\pi$, i. e, there is no CP violation in the Zee-Babu model at the two loop level. The effective mass governingneutrinoless double beta decay and the sum of neutrino masses areconsistent with the recent analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. bibitem{ATLAS} ATLAS Collaboration, G. Aad et al., Phys. Lett. B, textbf{716} (2012) 1, arXiv: 1207.7214 [hep-ex].
  2. bibitem{CMS} CMS Collaboration, S. Chatrchyan et al., Phys. Lett. B, textbf{716} (2012) 30, arXiv: 1207.7235 [hep-ex].
  3. bibitem{zee} A. Zee, {em Phys. Lett. B} {bf 93}, 389 (1980).
  4. bibitem{zeebabu}
  5. A. Zee, {em Nucl. Phys. B} {bf 264}, 99 (1986).
  6. bibitem{babu}
  7. K. S. Babu, Phys. Lett. B {bf 203}, 132 (1988).
  8. bibitem{lvZB} Hoang Ngoc Long and Vo Van Vien, Int. J. Mod. Phys. A textbf{29} (2014)
  9. , arXiv:1405.1622 [hep-ph].
  10. bibitem{tinhI} K. L. McDonald and B. H. J. McKellar (2003), textit{Evaluating The Two Loop Diagram Responsible For Neutrino Mass In Babu's Model}, arXiv: 0309270 [hep- ph].
  11. bibitem{babum} K. S. Babu, C. Macesanu, Phys. Rev. D textbf{67}
  12. (2003) 073010, arXiv: 0212058 [hep-ph].
  13. bibitem{ageng} T. Araki and C. Q. Geng, Phys. Lett. B textbf{694}, 113 (2010).
  14. bibitem{Nuexp1} D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D textbf{86}, 073012 (2012), arXiv:1205.4018 [hep-ph].
  15. bibitem{Tegmark} M. Tegmark et al, Phys. Rev. D textbf{69} (2004) 103501.
  16. bibitem{Ade} P. A. R. Ade et al. [Planck Collaboration], Astron.Astrophys. textbf{571} (2014) A16, arXiv:1303.5076 [astro-ph.CO].
  17. bibitem{PDG2012} J. Beringer, emph{et al.}(2012),
  18. emph{Review of Particle Physics} (Particle Data Group), Phys. Rev. D. textbf{86}, 010001.
  19. bibitem{betdecay1} W. Rodejohann, Int. J. Mod. Phys. E {bf 20}, 1833 (2011).
  20. bibitem{betdecay2} M. Mitra, G. Senjanovic, F. Vissani, Nucl. Phys. B {bf 856}, 26 (2012);
  21. bibitem{betdecay3}
  22. S. M. Bilenky, C. Giunti, Mod. Phys. Lett. A textbf{27}, 1230015 (2012),arXiv:1203.5250;
  23. bibitem{betdecay4}
  24. W. Rodejohann, J. Phys. G textbf{39} (2012) 124008, arXiv:1206.2560 [hep-ph].
  25. bibitem{betdecay5} A. Merle, Int. J. Mod. Phys. D {bf 22}, 1330020 (2013).