THERMOELASTIC DAMPING DEPENDING ON VIBRATION MODES OF NANO BEAM RESONATOR

Chu Manh Hoang
Author affiliations

Authors

  • Chu Manh Hoang Hanoi University of Science and Technology

DOI:

https://doi.org/10.15625/0868-3166/25/4/6887

Keywords:

Nano beam resonator, internal damping, operation mode, thermoelastic damping, FEM

Abstract

The obtainable quality factor for a nano beam resonator is limited due to internal damping such as thermoelastic damping. Therefore, understanding how internal damping varies with the respective resonant modes is very important to design a high performance nanoresonator. In this research, we investigate thermoelastic damping depending on vibration modes of nano beam resonators using finite element method. The study results show that the quality factor of a nanoresonator is lower than at high order modes. The silicon nano beam resonator with the quality factor larger than one million can be achieved by optimizing the dimensions of the resonant beam.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

R. Lifshitz and M. L. Roukes, Phys. Rev. B 61 (2000) 5600–5609. DOI: https://doi.org/10.1103/PhysRevB.61.5600

G. Rezazadeh, A. Saeedi, V. Saber, T. Rezaei, C. Cetinkaya, Acta Mech 223 (2012) 1137–1152. DOI: https://doi.org/10.1007/s00707-012-0622-3

Y. Sun, D. Fang, A.K. Soh, Int. J. Solids Struct 43 (2006) 3213–3229. DOI: https://doi.org/10.1016/j.ijsolstr.2005.08.011

Z. Hao, J. Sound Vib. 313 (1) (2008) 77–96. DOI: https://doi.org/10.1016/j.jsv.2007.11.035

S. Prabhakar, S. Vengallatore, J. Micromech.Microeng.17 (3) (2007) 532. DOI: https://doi.org/10.1088/0960-1317/17/3/016

A. Duwel, J. Gorman, M. Weinsteina, J. Borenstein, P. Ward, Sens. Actuators A: Physical, 103 (2003) 70–75. DOI: https://doi.org/10.1016/S0924-4247(02)00318-7

Y.B. Yi, J. Sound Vib. 309 (2008) 588–599. DOI: https://doi.org/10.1016/j.jsv.2007.07.055

X. Guo, Y.-B. Yi, S. Pourkamali, Int. J. Mech. Sci. 74 (2013) 73–82. DOI: https://doi.org/10.1016/j.ijmecsci.2013.04.013

A. Duwel, R. N Candler, T. W. Kenny, M. Varghese, J. Microelectromech. Syst. 15 (6) (2006) 1437–1445. DOI: https://doi.org/10.1109/JMEMS.2006.883573

X. Guo, Y.B. Yi, J. Sound Vib. 333 (2014) 1079–1095. DOI: https://doi.org/10.1016/j.jsv.2013.09.041

D. Jin, X. Li, J. Liu, G. Zuo, Y. Wang, M. Liu and H. Yu, J. Micromech.Microeng. 16 (2006) 1017. DOI: https://doi.org/10.1088/0960-1317/16/5/019

S. Schmidand C. Hierold, J. Appl. Phys. 104 (2008) 093516. DOI: https://doi.org/10.1063/1.3008032

S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, Phys. Rev. B 84 (2011) 165307. DOI: https://doi.org/10.1103/PhysRevB.84.165307

X. Liu, S. F. Morse, J. F. Vignola, D. M. Photiadis, A. Sarkissian, M. H. Marcus, and B. H. Houston, Appl. Phys. Lett.78 (2001) 1346. DOI: https://doi.org/10.1063/1.1350599

C. Zener, Phys. Rev. 53 (1937) 90–9. DOI: https://doi.org/10.1103/PhysRev.53.90

Downloads

Published

11-01-2016

How to Cite

[1]
C. M. Hoang, “THERMOELASTIC DAMPING DEPENDING ON VIBRATION MODES OF NANO BEAM RESONATOR”, Comm. Phys., vol. 25, no. 4, p. 317, Jan. 2016.

Issue

Section

Papers
Received 04-09-2015
Accepted 04-01-2016
Published 11-01-2016