Plasmon Wave Propagation Property of Metal Wedge Plasmonic Waveguides Covered by a Protective Oxide Layer

Vu Thi Ngoc Thuy, Chu Manh Hoang
Author affiliations

Authors

  • Vu Thi Ngoc Thuy \(^1\) International Training Institute for Materials Science, Hanoi University of Sciences and Technology, No.1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam;
    \(^2\) Faculty of Technical Education, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Viet Nam
  • Chu Manh Hoang Hanoi University of Science and Technology https://orcid.org/0000-0001-5808-8736

DOI:

https://doi.org/10.15625/0868-3166/15924

Keywords:

surface plasmon polariton, wedge plasmonic waveguide, protective oxide layer covered metal layer

Abstract

Guiding plasmon waves is based on dielectric/metal interfaces. The wedge-shaped interface shows an excellent capacity in the tight lightwave confinement at deep-subwavelength propagation mode size. Several types of metals have also been investigated for guiding plasmon waves. Among them, the Ag metal shows a plasmon wave guiding ability superior to other metals, however, it is sensitive to the operating medium and is easily oxidized. To overcome these drawbacks, the Ag wedge covered by a protective thin oxide layer is proposed. Numerically investigated results show that the propagation length of the Ag wedge covered by a protective thin silicon dioxide layer can be enhanced by a factor of 7.5 while its figure of merit is at least 1.7 times larger than that of the Au wedge waveguide. The advantage of the proposed interface is potential for developing plasmonic waveguide components.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Y. Fang and M. Sun, Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits, Light Sci. Appl. 4 (2015) e294. DOI: https://doi.org/10.1038/lsa.2015.67

S. J. Kress, F. V. Antolinez, P. Richner, S. V. Jayanti, D. K. Kim, F. Prins et al., Wedge waveguides and resonators for quantum plasmonics, Nano Lett. 15 (2015) 6267. DOI: https://doi.org/10.1021/acs.nanolett.5b03051

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno and F. García-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons, Phys. Rev. Lett. 100 (2008) 023901. DOI: https://doi.org/10.1103/PhysRevLett.100.023901

M. H. Chu and M.-T. Trinh, Enhancing propagation length of surface plasmon polaritons by using metallic double-layer structure, IEEE Photonics J. 11 (2019) 1. DOI: https://doi.org/10.1109/JPHOT.2019.2936311

N. T. Huong, N. D. Vy, M.-T. Trinh and C. M. Hoang, Tuning spp propagation length of hybrid plasmonic waveguide by manipulating evanescent field, Opt. Commun. 462 (2020) 125335. DOI: https://doi.org/10.1016/j.optcom.2020.125335

A. Tasolamprou, D. Zografopoulos and E. Kriezis, Liquid crystal-based dielectric loaded surface plasmon polariton optical switches, J. Appl. Phys. 110 (2011) 093102. DOI: https://doi.org/10.1063/1.3658247

J. S. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo et al., High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals, Opt. Express 19 (2011) 15265. DOI: https://doi.org/10.1364/OE.19.015265

A. A. R. Mohamed, L. A. Shahada and M. A. Swillam, Electro-optic plasmonic modulator with direct coupling to silicon waveguides, IEEE Photonics J. 9 (2017) 1. DOI: https://doi.org/10.1109/JPHOT.2017.2757014

M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife et al., Roadmap on plasmonics, J. Optics 20 (2018) 043001. DOI: https://doi.org/10.1088/2040-8986/aaa114

P. Debackere, S. Scheerlinck, P. Bienstman and R. Baets, Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor, Opt. Express 14 (2006) 7063. DOI: https://doi.org/10.1364/OE.14.007063

H. K. Mulder, A. Ymeti, V. Subramaniam and J. S. Kanger, Size-selective detection in integrated optical interferometric biosensors, Opt. Express 20 (2012) 20934. DOI: https://doi.org/10.1364/OE.20.020934

A. Paliwal, M. Tomar and V. Gupta, Refractive index sensor using long-range surface plasmon resonance with prism coupler, Plasmonics 14 (2019) 375. DOI: https://doi.org/10.1007/s11468-018-0814-3

S. Ghosh and B. Rahman, Evolution of plasmonic modes in a metal nano-wire studied by a modified finite element method, J. Lightwave Technol. 36 (2017) 809. DOI: https://doi.org/10.1109/JLT.2017.2782710

B. Sturlesi, M. Grajower, N. Mazurski and U. Levy, Integrated amorphous silicon-aluminum long-range surface plasmon polariton (lr-spp) waveguides, APL Photonics 3 (2018) 036103.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo and S. I. Bozhevolnyi, Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths, Opt. Express 16 (2008) 5252. DOI: https://doi.org/10.1364/OE.16.005252

N. T. Huong, N. V. Chinh and C. M. Hoang, Wedge surface plasmon polariton waveguides based on wet-bulk micromachining, Photonics 6 (2019) 21. DOI: https://doi.org/10.3390/photonics6010021

Y. Han, L. Li, J. Zhu, A. Valavanis, J. Freeman, L. Chen et al., Silver-based surface plasmon waveguide for terahertz quantum cascade lasers, Opt. Express 26 (2018) 3814. DOI: https://doi.org/10.1364/OE.26.003814

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg et al., Dielectric stripes on gold as surface plasmon waveguides, Appl. Phys. Lett. 88 (2006) 094104. DOI: https://doi.org/10.1063/1.2180448

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des Francs et al., Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths, Opt. Express 25 (2017) 394. DOI: https://doi.org/10.1364/OE.25.000394

B. Sturlesi, M. Grajower, N. Mazurski and U. Levy, Integrated amorphous silicon-aluminum long-range surface plasmon polariton (lr-spp) waveguides, APL Photonics 3 (2018) 036103. DOI: https://doi.org/10.1063/1.5013662

S. A. Maier et al., Plasmonics: fundamentals and applications, vol. 1. 2007. DOI: https://doi.org/10.1007/0-387-37825-1

M. R. Querry, Optical constants, tech. rep., Missouri Univ-Kansas City, 1985.

B. Ku, K.-S. Kim, Y. Kim and M.-S. Kwon, Bulk-silicon-based waveguides and bends fabricated using silicon wet etching: Properties and limits, J. Lightwave Technol. 35 (2017) 3918. DOI: https://doi.org/10.1109/JLT.2017.2723604

K. Okamoto, Fundamentals of optical waveguides. academic pr, 2006. DOI: https://doi.org/10.1016/B978-012525096-2/50003-9

R. Buckley and P. Berini, Figures of merit for 2d surface plasmon waveguides and application to metal stripes, Opt. Express 15 (2007) 12174. DOI: https://doi.org/10.1364/OE.15.012174

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2 (2008) 496. DOI: https://doi.org/10.1038/nphoton.2008.131

J. Tominaga, The application of silver oxide thin films to plasmon photonic devices, J. Phys.: Condens. Matter 15 (2003) R1101. DOI: https://doi.org/10.1088/0953-8984/15/25/201

I. Y. Bouderbala, A. Herbadji, L. Mentar, A. Beniaiche and A. Azizi, Optical properties of cu2o electrodeposited on fto substrates: effects of cl concentration, J. Electron. Mater. 47 (2018) 2000. DOI: https://doi.org/10.1007/s11664-017-6001-z

G. Papadimitropoulos, N. Vourdas, V. E. Vamvakas and D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers, Thin Solid Films 515 (2006) 2428. DOI: https://doi.org/10.1016/j.tsf.2006.06.002

Downloads

Published

27-03-2022

How to Cite

[1]
V. T. N. Thuy and C. M. Hoang, Plasmon Wave Propagation Property of Metal Wedge Plasmonic Waveguides Covered by a Protective Oxide Layer, Comm. Phys. 32 (2022) 179. DOI: https://doi.org/10.15625/0868-3166/15924.

Issue

Section

Papers
Received 09-03-2021
Accepted 02-10-2021
Published 27-03-2022