Plasmon Wave Propagation Property of Metal Wedge Plasmonic Waveguides Covered by a Protective Oxide Layer
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15924Keywords:
surface plasmon polariton, wedge plasmonic waveguide, protective oxide layer covered metal layerAbstract
Guiding plasmon waves is based on dielectric/metal interfaces. The wedge-shaped interface shows an excellent capacity in the tight lightwave confinement at deep-subwavelength propagation mode size. Several types of metals have also been investigated for guiding plasmon waves. Among them, the Ag metal shows a plasmon wave guiding ability superior to other metals, however, it is sensitive to the operating medium and is easily oxidized. To overcome these drawbacks, the Ag wedge covered by a protective thin oxide layer is proposed. Numerically investigated results show that the propagation length of the Ag wedge covered by a protective thin silicon dioxide layer can be enhanced by a factor of 7.5 while its figure of merit is at least 1.7 times larger than that of the Au wedge waveguide. The advantage of the proposed interface is potential for developing plasmonic waveguide components.
Downloads
Metrics
References
Y. Fang and M. Sun, Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits, Light Sci. Appl. 4 (2015) e294. DOI: https://doi.org/10.1038/lsa.2015.67
S. J. Kress, F. V. Antolinez, P. Richner, S. V. Jayanti, D. K. Kim, F. Prins et al., Wedge waveguides and resonators for quantum plasmonics, Nano Lett. 15 (2015) 6267. DOI: https://doi.org/10.1021/acs.nanolett.5b03051
E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno and F. García-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons, Phys. Rev. Lett. 100 (2008) 023901. DOI: https://doi.org/10.1103/PhysRevLett.100.023901
M. H. Chu and M.-T. Trinh, Enhancing propagation length of surface plasmon polaritons by using metallic double-layer structure, IEEE Photonics J. 11 (2019) 1. DOI: https://doi.org/10.1109/JPHOT.2019.2936311
N. T. Huong, N. D. Vy, M.-T. Trinh and C. M. Hoang, Tuning spp propagation length of hybrid plasmonic waveguide by manipulating evanescent field, Opt. Commun. 462 (2020) 125335. DOI: https://doi.org/10.1016/j.optcom.2020.125335
A. Tasolamprou, D. Zografopoulos and E. Kriezis, Liquid crystal-based dielectric loaded surface plasmon polariton optical switches, J. Appl. Phys. 110 (2011) 093102. DOI: https://doi.org/10.1063/1.3658247
J. S. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo et al., High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals, Opt. Express 19 (2011) 15265. DOI: https://doi.org/10.1364/OE.19.015265
A. A. R. Mohamed, L. A. Shahada and M. A. Swillam, Electro-optic plasmonic modulator with direct coupling to silicon waveguides, IEEE Photonics J. 9 (2017) 1. DOI: https://doi.org/10.1109/JPHOT.2017.2757014
M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife et al., Roadmap on plasmonics, J. Optics 20 (2018) 043001. DOI: https://doi.org/10.1088/2040-8986/aaa114
P. Debackere, S. Scheerlinck, P. Bienstman and R. Baets, Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor, Opt. Express 14 (2006) 7063. DOI: https://doi.org/10.1364/OE.14.007063
H. K. Mulder, A. Ymeti, V. Subramaniam and J. S. Kanger, Size-selective detection in integrated optical interferometric biosensors, Opt. Express 20 (2012) 20934. DOI: https://doi.org/10.1364/OE.20.020934
A. Paliwal, M. Tomar and V. Gupta, Refractive index sensor using long-range surface plasmon resonance with prism coupler, Plasmonics 14 (2019) 375. DOI: https://doi.org/10.1007/s11468-018-0814-3
S. Ghosh and B. Rahman, Evolution of plasmonic modes in a metal nano-wire studied by a modified finite element method, J. Lightwave Technol. 36 (2017) 809. DOI: https://doi.org/10.1109/JLT.2017.2782710
B. Sturlesi, M. Grajower, N. Mazurski and U. Levy, Integrated amorphous silicon-aluminum long-range surface plasmon polariton (lr-spp) waveguides, APL Photonics 3 (2018) 036103.
A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo and S. I. Bozhevolnyi, Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths, Opt. Express 16 (2008) 5252. DOI: https://doi.org/10.1364/OE.16.005252
N. T. Huong, N. V. Chinh and C. M. Hoang, Wedge surface plasmon polariton waveguides based on wet-bulk micromachining, Photonics 6 (2019) 21. DOI: https://doi.org/10.3390/photonics6010021
Y. Han, L. Li, J. Zhu, A. Valavanis, J. Freeman, L. Chen et al., Silver-based surface plasmon waveguide for terahertz quantum cascade lasers, Opt. Express 26 (2018) 3814. DOI: https://doi.org/10.1364/OE.26.003814
B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg et al., Dielectric stripes on gold as surface plasmon waveguides, Appl. Phys. Lett. 88 (2006) 094104. DOI: https://doi.org/10.1063/1.2180448
J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des Francs et al., Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths, Opt. Express 25 (2017) 394. DOI: https://doi.org/10.1364/OE.25.000394
B. Sturlesi, M. Grajower, N. Mazurski and U. Levy, Integrated amorphous silicon-aluminum long-range surface plasmon polariton (lr-spp) waveguides, APL Photonics 3 (2018) 036103. DOI: https://doi.org/10.1063/1.5013662
S. A. Maier et al., Plasmonics: fundamentals and applications, vol. 1. 2007. DOI: https://doi.org/10.1007/0-387-37825-1
M. R. Querry, Optical constants, tech. rep., Missouri Univ-Kansas City, 1985.
B. Ku, K.-S. Kim, Y. Kim and M.-S. Kwon, Bulk-silicon-based waveguides and bends fabricated using silicon wet etching: Properties and limits, J. Lightwave Technol. 35 (2017) 3918. DOI: https://doi.org/10.1109/JLT.2017.2723604
K. Okamoto, Fundamentals of optical waveguides. academic pr, 2006. DOI: https://doi.org/10.1016/B978-012525096-2/50003-9
R. Buckley and P. Berini, Figures of merit for 2d surface plasmon waveguides and application to metal stripes, Opt. Express 15 (2007) 12174. DOI: https://doi.org/10.1364/OE.15.012174
R. F. Oulton, V. J. Sorger, D. Genov, D. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2 (2008) 496. DOI: https://doi.org/10.1038/nphoton.2008.131
J. Tominaga, The application of silver oxide thin films to plasmon photonic devices, J. Phys.: Condens. Matter 15 (2003) R1101. DOI: https://doi.org/10.1088/0953-8984/15/25/201
I. Y. Bouderbala, A. Herbadji, L. Mentar, A. Beniaiche and A. Azizi, Optical properties of cu2o electrodeposited on fto substrates: effects of cl concentration, J. Electron. Mater. 47 (2018) 2000. DOI: https://doi.org/10.1007/s11664-017-6001-z
G. Papadimitropoulos, N. Vourdas, V. E. Vamvakas and D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers, Thin Solid Films 515 (2006) 2428. DOI: https://doi.org/10.1016/j.tsf.2006.06.002
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 02-10-2021
Published 27-03-2022