Vol. 24 No. 1 (2014)
Papers

Influence of Blocking Effect and Energetic Disorder on Diffusion in One-dimensional Lattice

Mai Thị Lan
Ha Noi University of Sciences and Technology.
Bio
Nguyen Van Hong
Hanoi University of Sciences and Technology
Nguyen Thu Nhan
Hanoi University of Sciences and Technology
Hoang Van Hue
Ho Chi Minh City University of Food Industry

Published 01-04-2014

Keywords

  • Diffusion,
  • Disordered lattices,
  • Gaussian distribution,
  • Blocking effect,
  • energetic disorders

How to Cite

Lan, M. T., Hong, N. V., Nhan, N. T., & Hue, H. V. (2014). Influence of Blocking Effect and Energetic Disorder on Diffusion in One-dimensional Lattice. Communications in Physics, 24(1), 85. https://doi.org/10.15625/0868-3166/24/1/3454

Abstract

The diffusion in one-dimensional disordered lattice with
Gaussian distribution of site and transition energies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and kinetic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as the mean time between two
consecutive jumps, correlation factor and diffusion coefficient. The
calculation shows a good agreement between analytical and simulation results for all disordered lattice types. In many-particle case, the blocking effect results in decreasing correlation factor F and average time \(\tau _{jump}\) between two consecutive jumps. With increasing the number of particles,
the diffusion coefficient \(D_{M}\) decreases for site-energy and
transition-energy disordered lattices due to the F-effect affects stronger than \(\tau\)-effect. Furthermore, the blocking effect almost is  temperature independent for both lattices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987).
  2. Peter M.Richards, Phys.Rev.B,16,4,1393 (1977).
  3. Li-Shi Luo et al., Phys.Rev.E, 51,1,43 (1995).
  4. A. V. Nenashev, F. Jansson, S. D. Baranovskii, R. Österbacka, A. V. Dvurechenskii, and F. Gebhard, Phys.Rev. B 81, 115203 (2010).
  5. J.W.Van de Leur, A.Yu. Orlov, Phys. Lett. A, 373,31, 2675 (2009).
  6. Y.Limoge, J.L.Bocquet, J.non-cryst.solids, 117/118, 605 (1990).
  7. Y.Limoge, J.L.Bocquet, Phys.Rev.Lett.65,1, 60 (1990).
  8. Panos Argyrakis et al, Phys.Rev. E,52,4, 3623 (1995).
  9. A. Tarasenko, L. Jastrabik, Applied Surface Science 256, 5137 (2010).
  10. S. H. Payne and H. J. Kreuzer,Phys. Rev. B 75, 115403 (2007).
  11. T. Apih, M. Bobnar, J. Dolinsˇek, L. Jastrow, D. Zander, U. Ko¨ster, Solid State Commun. 134, 337 (2005).
  12. N. Eliaz, D. Fuks, D. Eliezer,Mater. Lett. 39, 255 (1999).
  13. V.V.Kondratyev, A.V.Gapontsev, A.N. Voloshinskii, A.G. Obukhov, N.I.Timofeyev, Inter. J. of Hydrogen Energy 13, 708 (1999).
  14. Y.-S. Su and S. T. Pantelides, Phys.Rev.Lett. 88, 16, 165503 (2002).
  15. http://en.wikipedia.org/wiki/Normal_distribution.
  16. Y.Limoge, J.L.Bocquet, Acta metal. 36,7, 1717 (1988).
  17. R. Kutner, Physica A 224, 558 (1996).