Influence of Blocking Effect and Energetic Disorder on Diffusion in One-dimensional Lattice

Mai Thị Lan, Nguyen Van Hong, Nguyen Thu Nhan, Hoang Van Hue
Author affiliations

Authors

  • Mai Thị Lan Ha Noi University of Sciences and Technology.
  • Nguyen Van Hong Hanoi University of Sciences and Technology
  • Nguyen Thu Nhan Hanoi University of Sciences and Technology
  • Hoang Van Hue Ho Chi Minh City University of Food Industry

DOI:

https://doi.org/10.15625/0868-3166/24/1/3454

Keywords:

Diffusion, Disordered lattices, Gaussian distribution, Blocking effect, energetic disorders

Abstract

The diffusion in one-dimensional disordered lattice with
Gaussian distribution of site and transition energies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and kinetic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as the mean time between two
consecutive jumps, correlation factor and diffusion coefficient. The
calculation shows a good agreement between analytical and simulation results for all disordered lattice types. In many-particle case, the blocking effect results in decreasing correlation factor F and average time \(\tau _{jump}\) between two consecutive jumps. With increasing the number of particles,
the diffusion coefficient \(D_{M}\) decreases for site-energy and
transition-energy disordered lattices due to the F-effect affects stronger than \(\tau\)-effect. Furthermore, the blocking effect almost is  temperature independent for both lattices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987). DOI: https://doi.org/10.1016/0370-1573(87)90005-6

Peter M.Richards, Phys.Rev.B,16,4,1393 (1977). DOI: https://doi.org/10.1103/PhysRevB.16.1393

Li-Shi Luo et al., Phys.Rev.E, 51,1,43 (1995). DOI: https://doi.org/10.1103/PhysRevE.51.43

A. V. Nenashev, F. Jansson, S. D. Baranovskii, R. Österbacka, A. V. Dvurechenskii, and F. Gebhard, Phys.Rev. B 81, 115203 (2010). DOI: https://doi.org/10.1103/PhysRevB.81.115203

J.W.Van de Leur, A.Yu. Orlov, Phys. Lett. A, 373,31, 2675 (2009). DOI: https://doi.org/10.1016/j.physleta.2009.02.068

Y.Limoge, J.L.Bocquet, J.non-cryst.solids, 117/118, 605 (1990). DOI: https://doi.org/10.1016/0022-3093(90)90605-L

Y.Limoge, J.L.Bocquet, Phys.Rev.Lett.65,1, 60 (1990). DOI: https://doi.org/10.1103/PhysRevLett.65.60

Panos Argyrakis et al, Phys.Rev. E,52,4, 3623 (1995). DOI: https://doi.org/10.1103/PhysRevE.52.3623

A. Tarasenko, L. Jastrabik, Applied Surface Science 256, 5137 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.12.076

S. H. Payne and H. J. Kreuzer,Phys. Rev. B 75, 115403 (2007). DOI: https://doi.org/10.1103/PhysRevB.75.115403

T. Apih, M. Bobnar, J. Dolinsˇek, L. Jastrow, D. Zander, U. Ko¨ster, Solid State Commun. 134, 337 (2005). DOI: https://doi.org/10.1016/j.ssc.2005.01.042

N. Eliaz, D. Fuks, D. Eliezer,Mater. Lett. 39, 255 (1999). DOI: https://doi.org/10.1016/S0167-577X(99)00014-2

V.V.Kondratyev, A.V.Gapontsev, A.N. Voloshinskii, A.G. Obukhov, N.I.Timofeyev, Inter. J. of Hydrogen Energy 13, 708 (1999).

Y.-S. Su and S. T. Pantelides, Phys.Rev.Lett. 88, 16, 165503 (2002). DOI: https://doi.org/10.1103/PhysRevLett.88.165503

http://en.wikipedia.org/wiki/Normal_distribution.

Y.Limoge, J.L.Bocquet, Acta metal. 36,7, 1717 (1988). DOI: https://doi.org/10.1016/0001-6160(88)90239-8

R. Kutner, Physica A 224, 558 (1996). DOI: https://doi.org/10.1016/0378-4371(95)00334-7

Downloads

Published

01-04-2014

How to Cite

[1]
M. T. Lan, N. V. Hong, N. T. Nhan, and H. V. Hue, “Influence of Blocking Effect and Energetic Disorder on Diffusion in One-dimensional Lattice”, Comm. Phys., vol. 24, no. 1, p. 85, Apr. 2014.

Issue

Section

Papers
Received 28-11-2013
Published 01-04-2014