Accelerated MD Program Using CUDA Technology
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/21/2/107Abstract
Molecular dynamic (MD) simulation is proven to be an important tool to study the structure as well as the physical properties at atomic level in materials science. However, it requires a huge computing time and hence limits the ability to treat a large scale simulation. In this paper we present a solution to speed up the MD simulation using CUDA technology (Compute Unified Device Architecture). We used the GeForce GTS 250 card with Version 2.30. The simulation is implemented for Lennard-Jones systems with periodic boundary conditions which consist of 1024, 2048, 4096 and 8192 atoms. The calculation shows that the computing time depends on the size of system and could be decreased by 37 times. This result indicates a possibility of constructing a large MD model with up to 105 atoms on the usual PC.Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
Downloads
Published
28-06-2011
How to Cite
[1]
H. V. Hue, N. T. T. Ha, and P. K. Hung, “Accelerated MD Program Using CUDA Technology”, Comm. Phys., vol. 21, no. 2, p. 131, Jun. 2011.
Issue
Section
Papers
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 28-06-2011