Uncorrelated electron-hole transition Energy in GaN│InGaN│GaN Spherical QDQW Nanoparticles

Haddou El Ghazi, Anouar Jorio, Izeddine Zorkani
Author affiliations

Authors

  • Haddou El Ghazi Dhar El Mehrez Fez university
  • Anouar Jorio LPS, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas, Morocco
  • Izeddine Zorkani LPS, Faculty of science, Dhar EL Mehrez, BP 1796 Fes-Atlas, Morocco

DOI:

https://doi.org/10.15625/0868-3166/23/2/2782

Keywords:

Transition Energy, Parabolic Potential, Spherical nanoparticles

Abstract

The electron (hole) energy and uncorrelated \(1S_e - 1S_{h}\) electron-hole transition in Core(GaN)| well(In\(_x\)Ga\(_{1 - x}\)N)| shell(GaN) spherical QDQW nanoparticles is investigated as a function of the inner and the outer radii. The calculations are performed within the framework of the effective-mass approximation and the finite parabolic potential confinement barrier in which two confined parameters are taking account. The Indium composition effect is also investigated. A critical value of the outer and the inner ratio is obtained which constitutes the turning point of two indium composition behaviors.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Mews, A. Eychmuller, M. Giersig, D. Schooss and H. Weller, J. Phys. Chem. 98 (1994) 934-041. DOI: https://doi.org/10.1021/j100054a032

D. Schooss, A. Mews, A. Eychmuller and H. Weller, Phys. Rev. B 49 (1994) 17072-17078. DOI: https://doi.org/10.1103/PhysRevB.49.17072

G.W. Bryant, Phys. Rev. B 52 (1995) R16997-R17000. DOI: https://doi.org/10.1103/PhysRevB.52.R16997

El Khamkhami, E. Feddi, E. Assaid, F. Dujardin, B. Stébé and J. Diouri, Phys. Low-Dim. Struct. 9 (2001) 131-142.

A. Eychmuller, A. Mews and H. Weller, Chem. Phys. Lett. 208 (1993) 59. DOI: https://doi.org/10.1016/0009-2614(93)80076-2

G.W. Bryant and W. Jaskolski, Phys. Stat. Sol. 224 (2001) 751-755. DOI: https://doi.org/10.1002/(SICI)1521-3951(200104)224:3<751::AID-PSSB751>3.0.CO;2-L

B. Little, M. El Sayed, G.W. Bryant and S. Burke, Chem. Phys. 114 (2001) 1813-1822. DOI: https://doi.org/10.1063/1.1333758

M. Millo, D. Katz, Y. W. Cao and U. Banin, Phys. Stat. Sol. 224 (2001) 271-276. DOI: https://doi.org/10.1002/1521-3951(200103)224:1<271::AID-PSSB271>3.0.CO;2-#

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, A.R. Kovsh, V. Ustinov, N.N. Ledentsov and D. Binbenrg, Phys. Stat. Sol. 224 (2001) 61-65. DOI: https://doi.org/10.1002/1521-3951(200103)224:1<61::AID-PSSB61>3.0.CO;2-O

Y. Fang, M. Xiao and D. Yao, Physica E 42 (2010) 2178-2183. DOI: https://doi.org/10.1016/j.physe.2010.03.036

E. M. Kazaryan, A. A. Kostanyan and R. G. Boghosyan, J. Phys. Conf. Series 350 (2012) 012020. DOI: https://doi.org/10.1088/1742-6596/350/1/012020

E. Sadeghi and G. Rezaie, Pramana. J. Phys. 75 (2010) 749-755. DOI: https://doi.org/10.1007/s12043-010-0154-0

H. El Ghazi, A. Jorio and I. Zorkani, Submitted to Physica B (November 2012).

J. W. Hauss, H. S. Zhou, I. Honma and H. Komiyama, Phys. Rev. B 47 (1993) 1359. DOI: https://doi.org/10.1103/PhysRevB.47.1359

K. Chang and J. B. Xia, Phys. Rev. B 57 (1998) 9780. DOI: https://doi.org/10.1103/PhysRevB.57.9780

H. El Ghazi, A. Jorio and I. Zorkani, Afr. Rev. Phys. 12 (2012) 237-241.

E. Sadeghi, Physica E 41 (2009) 1319-1322. DOI: https://doi.org/10.1016/j.physe.2009.03.004

Downloads

Published

08-05-2013

How to Cite

[1]
H. El Ghazi, A. Jorio and I. Zorkani, Uncorrelated electron-hole transition Energy in GaN│InGaN│GaN Spherical QDQW Nanoparticles, Comm. Phys. 23 (2013) 127. DOI: https://doi.org/10.15625/0868-3166/23/2/2782.

Issue

Section

Papers
Received 04-03-2013
Published 08-05-2013