The Nonlinear Acoustoelectric Effect in a Superlattice
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/20/3/2278Abstract
The acoustoelectric effect in a superlattice (SL) is investigated for an acoustic wave whose wavelength $\lambda =2\pi/ q$ is smaller than the mean free path $l$ of the electrons and hypersound in the region $ql\gg1$. (where $ q$ is the acoustic wave number) . A nonlinear dependence of the acoustoelectric current $j^{ac}$ on the constant electric field $E$ is obtained by using the classical Boltzmann kenetic equation. The analytical expression for the acoustoelectric current $j^{ac}$ is calculated for constant of momentum relaxation time. Numerical calculations is done, and the result is discussed for a typical GaAs/AlGaAs SL. It is noted that when the electric field is negative the current $j^{ac}$ decreases, reaches a minimum and rises. On the other hand, when the electric field is positive the current increases, reaches a maximum and then falls off. A similar observation has been noted for an acoustoelectric interaction in a multilayered structure resulting from the analysis of $Si/SiO_{2}$ structure. The dominant mechanism for such a behavior is attributed to the periodicity of the energy spectrum of electron along the SL axis.Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
Downloads
Published
15-08-2012
How to Cite
[1]
N. Q. Bau, N. V. Hieu, N. T. Thuy, and T. C. Phong, “The Nonlinear Acoustoelectric Effect in a Superlattice”, Comm. Phys., vol. 20, no. 3, p. 249, Aug. 2012.
Issue
Section
Papers
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 15-08-2012