Novel imprint of a dark photon from the 3-3-1-1 model
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/21740Keywords:
dark photon, 3-3-1-1 model, electroweak symmetry, dark matter, collider phenomenaAbstract
We investigate a dark photon that arises from the UV model based upon $SU(3)_C\otimes SU(3)_L\otimes U(1)_X \otimes U(1)_G$ (3-3-1-1) gauge symmetry, where the last three factors enlarge the electroweak symmetry encompassing electric charge $Q=T_3 - 1/ \sqrt{3}T_8 +X$ and dark charge $D = -2/\sqrt{3} T_8 +G$. It is well-established that this model addresses the questions of family number, neutrino mass, and dark matter. It is shown in this work that if the 3-3-1-1 breaking scale is much bigger than the dark charge breaking scale, the relevant dark gauge boson $Z'$ is uniquely imprinted at TeV, avoiding dangerous FCNC processes, obeying precision electroweak measurements, as well as contributing to collider phenomena, even if no kinetic mixing is presented. The dark matter observables are perhaps governed by the dark charge breaking Higgs field instead of the dark photon.
Downloads
Metrics
References
M. Singer, J. W. F. Valle and J. Schechter, Canonical neutral-current predictions from the weak-electromagnetic gauge group SU(3) × U(1), Phys. Rev. D 22 (1980) 738.
J. W. F. Valle and M. Singer, Lepton-number violation with quasi-Dirac neutrinos, Phys. Rev. D 28 (1983) 540.
F. Pisano and V. Pleitez, SU(3) ⊗ U(1) model for electroweak interactions, Phys. Rev. D 46 (1992) 410.
P. H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 2889.
R. Foot, H. N. Long, and Tuan A. Tran, SU(3)L ⊗ U(1)N and SU(4)L⊗ U(1)N gauge models with right-handed neutrinos, Phys. Rev. D 50 (1994) R34.
P. V. Dong, T. D. Tham and H. T. Hung, 3-3-1-1 model for dark matter, Phys. Rev. D 87 (2013) 115003.
P. V. Dong, Unifying the electroweak and B - L interactions, Phys. Rev. D 92 (2015) 055026.
P. V. Dong, D. T. Huong, F. S. Queiroz, and N. T. Thuy, Phenomenology of the 3-3-1-1 model, Phys. Rev. D 90 (2014) 075021.
A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz and J. W. F. Valle, Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter, Phys. Lett. B 772 (2017) 825.
C. H. Nam, D. V. Loi, L. X. Thuy and P. V. Dong, Multicomponent dark matter in noncommutative B - L gauge theory, J. High Energ. Phys. 2020 (2020) 29.
D. V. Loi, C. H. Nam, and P. V. Dong, Dark matter in the fully flipped 3-3-1-1 model, Eur. Phys. J. C 81 (2021) 591.
S. K. Kang, O. Popov, R. Srivastava, J. W. F. Valle, and C. A. Vaquera-Araujo, Scotogenic dark matter stability from gauged matter parity, Phys. Lett. B 798 (2019) 135013.
J. Leite, O. Popov, R. Srivastava and J. W. F. Valle, A theory for scotogenic dark matter stabilised by residual gauge symmetry, Phys. Lett. B 802 (2020) 135254.
J. Leite, A. Morales, J. W. F. Valle, and C. A. Vaquera-Araujo, Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory, Phys. Rev. D 102 (2020) 015022.
A. E. C. Hernandez, J. W. F. Valle, and C. A. Vaquera-Araujo, Simple theory for scotogenic dark matter with residual matter-parity, Phys. Lett. B 809 (2020) 135757.
A. E. C. Hernandez, C. Hati, S. Kovalenko, J. W. F. Valle, and C. A. Vaquera-Araujo, Revamping Kaluza-Klein dark matter in an orbifold theory of flavor, J. High Energ. Phys. 03 (2022) 034.
D. T. Huong, P. V. Dong, C. S. Kim, and N. T. Thuy, Inflation and leptogenesis in the 3-3-1-1 model, Phys. Rev. D 91 (2015) 055023.
P. V. Dong and D. T. Si, Kinetic mixing effect in the 3-3-1-1 model, Phys. Rev. D 93 (2016) 115003.
D. T. Huong and P. V. Dong, Neutrino masses and superheavy dark matter in the 3-3-1-1 model, Eur. Phys. J. C 77 (2017) 204.
P. V. Dong, D. T. Huong, D. A. Camargo, F. S. Queiroz, and J. W. F. Valle, Asymmetric dark matter, inflation, and leptogenesis from B-L symmetry breaking, Phys. Rev. D 99 (2019) 055040.
D. V. Loi, P. V. Dong, and L. X. Thuy, Kinetic mixing effect in noncommutative B - L gauge theory, J. High Energ. Phys. 09 (2019) 054.
A. G. Dias, J. Leite and B. L. Sanchez-Vega, Scale-invariant 3-3-1-1 model with B−L symmetry, Phys. Rev. D 106 (2022) 115008.
A. E. C. Hernandez, L. Duarte, A. S. de Jesus, S. Kovalenko, F. S. Queiroz, C. Siqueira et al., Flavor changing interactions confronted with meson mixing and hadron colliders, Phys. Rev. D 107 (2023) 063005.
A. S. de Jesus, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer and J. Ullrich, Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms, Phys. Lett. B 849 (2024) 138419.
Phung Van Dong and Duong Van Loi, Scotogenic model from an extended electroweak symmetry, arXiv:2309.12091.
Marco Fabbrichesi, Emidio Gabrielli and Gaia Lanfranchi, The dark photon, arXiv:2005.01515.
S. L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579.
S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264.
A. Salam, Weak and electromagnetic interactions, Conf. Proc. C 680519 (1968) 367.
P. V. Dong and H. N. Long, U(1)Q invariance and SU(3)C ⊗ SU(3)L ⊗ U(1)X models with β arbitrary, Eur. Phys. J. C 42 (2005) 325.
J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Z' bosons from electroweak precision data, J. High Energ. Phys. 08 (2009) 017.
https://lepewwg.web.cern.ch/lepewwg/.
Particle Data Group Collaboration, Review of particle physics, Prog. Theor. Exp. Phys. 2022 (2022) 083C01.
K. Sasaki, Effects of dilepton gauge bosons on the electroweak parameters S, T and U, Phys. Lett. B 308 (1993) 297.
P. H. Frampton and M. Harada, Bilepton production in e-γ collisions, Phys. Rev. D 58 (1998) 095013.
H. N. Long and T. Inami, S, T, U parameters in SU(3)(C) × SU(3)(L) × U(1) model with right-handed neutrinos, Phys. Rev. D 61 (2000) 075002.
LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration and LEP Electroweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model, arXiv:hep-ex/0612034.
ATLAS Collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb-1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector, J. High Energ. Phys. 2017 (2017) 182.
J. Schechter and J. W. F. Valle, Neutrino masses in SU(2) ⊗ U(1) theories, Phys. Rev. D 22 (1980) 2227.
G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Indirect search for dark matter with micrOMEGAs_2.4, Comput. Phys. Commun. 180 (2009) 747.
J. Ellis, A. Ferstl and K. A. Olive, Re-evaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304.
LUX-ZEPLIN Collaboration, First dark matter search results from the LUX-ZEPLIN (LZ) experiment, Phys. Rev. Lett. 131 (2023) 041002.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 15-12-2024
Published 31-03-2025
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.01-2023.50