Gauge Origin of Double Dark Parity and Implication for Dark Matter

Dong Van Phung, Loi Duong Van
Author affiliations

Authors

  • Dong Van Phung Phenikaa University
  • Loi Duong Van Phenikaa Institute for Advanced Study and Faculty of Basic Science, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 100000, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/16784

Keywords:

Gauge model, Discrete symmetry, Dark matter

Abstract

Dark matter must be stabilized over the cosmological timescale, which demands the existence of a stabilizing symmetry, derived by a dark charge, $D$. The existence of this dark charge may affect the quantization of electric charge, which theoretically shifts the electric charge, thus the hypercharge to a novel gauge extension, $SU(3)_C\otimes SU(2)_L\otimes U(1)_Y\otimes U(1)_N$, where $N$ determines $D=T_3+N$, similar to $Q=T_3+Y$. New observation of this work is that the dark charge is broken down to two kinds of dark parity, $Z_2$ and $Z'_2$, which subsequently imply three scenarios of dark matter. The relic density and direct detection for the scenario of two-component dark matter are investigated in detail.     

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. Kajita, Nobel lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016) 030501. DOI: https://doi.org/10.1103/RevModPhys.88.030501

A. B. McDonald, Nobel lecture: The sudbury neutrino observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502. DOI: https://doi.org/10.1103/RevModPhys.88.030502

WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226]. DOI: https://doi.org/10.1088/0067-0049/208/2/19

PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421. DOI: https://doi.org/10.1016/0370-2693(77)90435-X

M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C790927 (1979) 315 [arXiv:1306.4669].

T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95.

S. L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687. DOI: https://doi.org/10.1007/978-1-4684-7197-7_15

J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D22 (1980) 2227. DOI: https://doi.org/10.1103/PhysRevD.22.2227

S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566. DOI: https://doi.org/10.1103/PhysRevLett.43.1566

A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation, Phys. Lett. B 93 (1980) 389. DOI: https://doi.org/10.1016/0370-2693(80)90349-4

A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99. DOI: https://doi.org/10.1016/0550-3213(86)90475-X

K. Babu, Model of ’Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132. DOI: https://doi.org/10.1016/0370-2693(88)91584-5

L. M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389]. DOI: https://doi.org/10.1103/PhysRevD.67.085002

E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225]. DOI: https://doi.org/10.1103/PhysRevD.73.077301

N. Okada and O. Seto, Higgs portal dark matter in the minimal gauged U (1)B−L model, Phys. Rev. D 82 (2010) 023507 [arXiv:1002.2525]. DOI: https://doi.org/10.1103/PhysRevD.82.023507

S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356]. DOI: https://doi.org/10.1142/9789812839657_0001

K. S. Babu and R. N. Mohapatra, Is There a Connection Between Quantization of Electric Charge and a Majorana Neutrino?, Phys. Rev. Lett. 63 (1989) 938. DOI: https://doi.org/10.1103/PhysRevLett.63.938

K. S. Babu and R. N. Mohapatra, Quantization of Electric Charge From Anomaly Constraints and a Majorana Neutrino, Phys. Rev. D 41 (1990) 271. DOI: https://doi.org/10.1103/PhysRevD.41.271

R. Foot, G. C. Joshi, H. Lew and R. R. Volkas, Charge quantization in the standard model and some of its extensions, Mod. Phys. Lett. A 5 (1990) 2721. DOI: https://doi.org/10.1142/S0217732390003176

P. Van Dong, Flipping principle for neutrino mass and dark matter, Phys. Rev. D 102 (2020) 011701 [arXiv:2003.13276]. DOI: https://doi.org/10.1103/PhysRevD.102.011701

D. Van Loi, C. H. Nam, N. H. Tan and P. Van Dong, Dark charge vs electric charge, 2004.06005.

D. Van Loi, N. M. Duc and P. Van Dong, Dequantization of electric charge: Probing scenarios of cosmological multi-component dark matter, arXiv:2106.12278.

Z. G. Berezhiani and M. Y. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73. DOI: https://doi.org/10.1007/BF01570798

Z. G. Berezhiani and M. Y. Khlopov, Physics of cosmological dark matter in the theory of broken family symmetry. (In Russian), Sov. J. Nucl. Phys. 52 (1990) 60.

C. Boehm, P. Fayet and J. Silk, Light and heavy dark matter particles, Phys. Rev. D 69 (2004) 101302 [hep-ph/0311143]. DOI: https://doi.org/10.1103/PhysRevD.69.101302

E. Ma, Supersymmetric Model of Radiative Seesaw Majorana Neutrino Masses, Annales Fond. Broglie 31 (2006) 285 [hep-ph/0607142].

T. Hur, H.-S. Lee and S. Nasri, A Supersymmetric U(1)-prime model with multiple dark matters, Phys. Rev. D 77 (2008) 015008 [0710.2653]. DOI: https://doi.org/10.1103/PhysRevD.77.015008

Q.-H. Cao, E. Ma, J. Wudka and C. P. Yuan, Multipartite dark matter, 0711.3881.

PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.

L. M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221. DOI: https://doi.org/10.1103/PhysRevLett.62.1221

Y. Mambrini, S. Profumo and F. S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807 [1508.06635]. DOI: https://doi.org/10.1016/j.physletb.2016.07.076

P. Van Dong, C. H. Nam and D. Van Loi, Canonical seesaw implication for two-component dark matter, Phys. Rev. D 103 (2021) 095016 [2007.08957]. DOI: https://doi.org/10.1103/PhysRevD.103.095016

P. Van Dong, D. T. Huong, D. A. Camargo, F. S. Queiroz and J. W. F. Valle, Asymmetric Dark Matter, Inflation and Leptogenesis from B − L Symmetry Breaking, Phys. Rev. D 99 (2019) 055040 [1805.08251]. DOI: https://doi.org/10.1103/PhysRevD.99.055040

C. H. Nam, D. Van Loi, L. X. Thuy and P. Van Dong, Multicomponent dark matter in noncommutative B − L gauge theory, JHEP 12 (2020) 029 [arXiv:2006.00845]. DOI: https://doi.org/10.1007/JHEP12(2020)029

V. Barger, W.-Y. Keung and G. Shaughnessy, Spin Dependence of Dark Matter Scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962]. DOI: https://doi.org/10.1103/PhysRevD.78.056007

XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [1705.06655].

XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [1805.12562].

B. Petersen, M. Ratz and R. Schieren, Patterns of remnant discrete symmetries, JHEP 08 (2009) 111 [0907.4049]. DOI: https://doi.org/10.1088/1126-6708/2009/08/111

B. Batell, Dark Discrete Gauge Symmetries, Phys. Rev. D 83 (2011) 035006 [1007.0045]. DOI: https://doi.org/10.1103/PhysRevD.83.035006

G. Be ́langer, K. Kannike, A. Pukhov and M. Raidal, Minimal semi-annihilating ZN scalar dark matter, JCAP 06 (2014) 021 [1403.4960]. DOI: https://doi.org/10.1088/1475-7516/2014/06/021

C. E. Yaguna and O. Zapata, Multi-component scalar dark matter from a ZN symmetry: a systematic analysis, JHEP 03 (2020) 109 [1911.05515]. DOI: https://doi.org/10.1007/JHEP03(2020)109

Downloads

Published

27-03-2022

How to Cite

[1]
D. V. Phung and L. Duong Van, “Gauge Origin of Double Dark Parity and Implication for Dark Matter”, Comm. Phys., vol. 32, no. 2, p. 101, Mar. 2022.

Issue

Section

Papers
Received 08-12-2021
Accepted 09-02-2022
Published 27-03-2022

Most read articles by the same author(s)