Gauge Origin of Double Dark Parity and Implication for Dark Matter
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16784Keywords:
Gauge model, Discrete symmetry, Dark matterAbstract
Dark matter must be stabilized over the cosmological timescale, which demands the existence of a stabilizing symmetry, derived by a dark charge, $D$. The existence of this dark charge may affect the quantization of electric charge, which theoretically shifts the electric charge, thus the hypercharge to a novel gauge extension, $SU(3)_C\otimes SU(2)_L\otimes U(1)_Y\otimes U(1)_N$, where $N$ determines $D=T_3+N$, similar to $Q=T_3+Y$. New observation of this work is that the dark charge is broken down to two kinds of dark parity, $Z_2$ and $Z'_2$, which subsequently imply three scenarios of dark matter. The relic density and direct detection for the scenario of two-component dark matter are investigated in detail.
Downloads
Metrics
References
T. Kajita, Nobel lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016) 030501. DOI: https://doi.org/10.1103/RevModPhys.88.030501
A. B. McDonald, Nobel lecture: The sudbury neutrino observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502. DOI: https://doi.org/10.1103/RevModPhys.88.030502
WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226]. DOI: https://doi.org/10.1088/0067-0049/208/2/19
PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421. DOI: https://doi.org/10.1016/0370-2693(77)90435-X
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C790927 (1979) 315 [arXiv:1306.4669].
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95.
S. L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687. DOI: https://doi.org/10.1007/978-1-4684-7197-7_15
J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D22 (1980) 2227. DOI: https://doi.org/10.1103/PhysRevD.22.2227
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566. DOI: https://doi.org/10.1103/PhysRevLett.43.1566
A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation, Phys. Lett. B 93 (1980) 389. DOI: https://doi.org/10.1016/0370-2693(80)90349-4
A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99. DOI: https://doi.org/10.1016/0550-3213(86)90475-X
K. Babu, Model of ’Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132. DOI: https://doi.org/10.1016/0370-2693(88)91584-5
L. M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389]. DOI: https://doi.org/10.1103/PhysRevD.67.085002
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225]. DOI: https://doi.org/10.1103/PhysRevD.73.077301
N. Okada and O. Seto, Higgs portal dark matter in the minimal gauged U (1)B−L model, Phys. Rev. D 82 (2010) 023507 [arXiv:1002.2525]. DOI: https://doi.org/10.1103/PhysRevD.82.023507
S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356]. DOI: https://doi.org/10.1142/9789812839657_0001
K. S. Babu and R. N. Mohapatra, Is There a Connection Between Quantization of Electric Charge and a Majorana Neutrino?, Phys. Rev. Lett. 63 (1989) 938. DOI: https://doi.org/10.1103/PhysRevLett.63.938
K. S. Babu and R. N. Mohapatra, Quantization of Electric Charge From Anomaly Constraints and a Majorana Neutrino, Phys. Rev. D 41 (1990) 271. DOI: https://doi.org/10.1103/PhysRevD.41.271
R. Foot, G. C. Joshi, H. Lew and R. R. Volkas, Charge quantization in the standard model and some of its extensions, Mod. Phys. Lett. A 5 (1990) 2721. DOI: https://doi.org/10.1142/S0217732390003176
P. Van Dong, Flipping principle for neutrino mass and dark matter, Phys. Rev. D 102 (2020) 011701 [arXiv:2003.13276]. DOI: https://doi.org/10.1103/PhysRevD.102.011701
D. Van Loi, C. H. Nam, N. H. Tan and P. Van Dong, Dark charge vs electric charge, 2004.06005.
D. Van Loi, N. M. Duc and P. Van Dong, Dequantization of electric charge: Probing scenarios of cosmological multi-component dark matter, arXiv:2106.12278.
Z. G. Berezhiani and M. Y. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73. DOI: https://doi.org/10.1007/BF01570798
Z. G. Berezhiani and M. Y. Khlopov, Physics of cosmological dark matter in the theory of broken family symmetry. (In Russian), Sov. J. Nucl. Phys. 52 (1990) 60.
C. Boehm, P. Fayet and J. Silk, Light and heavy dark matter particles, Phys. Rev. D 69 (2004) 101302 [hep-ph/0311143]. DOI: https://doi.org/10.1103/PhysRevD.69.101302
E. Ma, Supersymmetric Model of Radiative Seesaw Majorana Neutrino Masses, Annales Fond. Broglie 31 (2006) 285 [hep-ph/0607142].
T. Hur, H.-S. Lee and S. Nasri, A Supersymmetric U(1)-prime model with multiple dark matters, Phys. Rev. D 77 (2008) 015008 [0710.2653]. DOI: https://doi.org/10.1103/PhysRevD.77.015008
Q.-H. Cao, E. Ma, J. Wudka and C. P. Yuan, Multipartite dark matter, 0711.3881.
PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.
L. M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221. DOI: https://doi.org/10.1103/PhysRevLett.62.1221
Y. Mambrini, S. Profumo and F. S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807 [1508.06635]. DOI: https://doi.org/10.1016/j.physletb.2016.07.076
P. Van Dong, C. H. Nam and D. Van Loi, Canonical seesaw implication for two-component dark matter, Phys. Rev. D 103 (2021) 095016 [2007.08957]. DOI: https://doi.org/10.1103/PhysRevD.103.095016
P. Van Dong, D. T. Huong, D. A. Camargo, F. S. Queiroz and J. W. F. Valle, Asymmetric Dark Matter, Inflation and Leptogenesis from B − L Symmetry Breaking, Phys. Rev. D 99 (2019) 055040 [1805.08251]. DOI: https://doi.org/10.1103/PhysRevD.99.055040
C. H. Nam, D. Van Loi, L. X. Thuy and P. Van Dong, Multicomponent dark matter in noncommutative B − L gauge theory, JHEP 12 (2020) 029 [arXiv:2006.00845]. DOI: https://doi.org/10.1007/JHEP12(2020)029
V. Barger, W.-Y. Keung and G. Shaughnessy, Spin Dependence of Dark Matter Scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962]. DOI: https://doi.org/10.1103/PhysRevD.78.056007
XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [1705.06655].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [1805.12562].
B. Petersen, M. Ratz and R. Schieren, Patterns of remnant discrete symmetries, JHEP 08 (2009) 111 [0907.4049]. DOI: https://doi.org/10.1088/1126-6708/2009/08/111
B. Batell, Dark Discrete Gauge Symmetries, Phys. Rev. D 83 (2011) 035006 [1007.0045]. DOI: https://doi.org/10.1103/PhysRevD.83.035006
G. Be ́langer, K. Kannike, A. Pukhov and M. Raidal, Minimal semi-annihilating ZN scalar dark matter, JCAP 06 (2014) 021 [1403.4960]. DOI: https://doi.org/10.1088/1475-7516/2014/06/021
C. E. Yaguna and O. Zapata, Multi-component scalar dark matter from a ZN symmetry: a systematic analysis, JHEP 03 (2020) 109 [1911.05515]. DOI: https://doi.org/10.1007/JHEP03(2020)109
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 09-02-2022
Published 27-03-2022