Transformation of ferromagnetic properties in Fe\(_3\)O\(_4\) to \(\alpha-\textbf{Fe}_{2}\textbf{O}_{3}\) by the polyol process and heat treatment

Nguyen Thi Nhat Hang, Le Hong Phuc, Ho Van Cuu, Nguyen Huu Tri, Nguyen Viet Long
Author affiliations

Authors

  • Nguyen Thi Nhat Hang Institute of Applied Technology, Thu Dau Mot University, 6 Tran Van On Street, Phu Hoa Ward, Thu Dau Mot City 820000, Vietnam
  • Le Hong Phuc National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, 291 Dien Bien Phu, Ho Chi Minh City, 700000, Vietnam
  • Ho Van Cuu Department of Electronics and Telecommunications, Saigon University, 273 An Duong Vuong, District 5, Ho Chi Minh City 700000, Vietnam
  • Nguyen Huu Tri Department of Electronics and Telecommunications, Saigon University, 273 An Duong Vuong, District 5, Ho Chi Minh City 700000, Vietnam
  • Nguyen Viet Long Sai Gon University, 273 An Duong Vuong, District 5, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/20630

Keywords:

The polyol process, The polyol technology, α-Fe2O3, Fe3O4, ferromagnetism

Abstract

This study investigates the transformation of ferromagnetic properties of Fe3O4 to \(\alpha\)-Fe2O3 through the polyol process and subsequent heat treatment. Structural and magnetic changes were analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM), revealing significant phase transitions and magnetic property variations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao and Y. Hou, Magnetic nanomaterials: Chemical design, synthesis, and potential applications, Acc. Chem. Res. 51 (2018) 404.
A. Vedrtnam, K. Kalauni, S. Dubey and A. Kumar, A comprehensive study on structure, properties, synthesis and characterization of ferrites, AIMS Mater. Sci. 7 (2020) 800.
M. D. Nguyen, H. V. Tran, S. Xu and T. R. Lee, Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications, Appl. Sci. 11(23) (2021) 11301.
I. S. Lyubutin, C. R. Lin, Y. V. Korzhetskiy, T. V. Dmitrieva and R. K. Chiang, Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites, J. Appl. Phys.106 (2009) 034311.
G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan and W. Li, Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties, J. Alloys Compd. 509(11) (2011) 4320.
J. S. Xu, Y. J. Zhu and F. Chen, Solvothermal synthesis, characterization and magnetic properties of α-Fe2O3 and Fe3O4 flower-like hollow microspheres, J. Solid State Chem. 199 (2013) 204.
Y. El Mendili, J. F. Bardeau, N. Randrianantoandro, J. M. Greneche and F. Grasset, Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix: γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3, STAM 17 (2016) 597.
R. M. Fratila, S. Rivera-Fernandez and J. M. de La Fuente, Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials, Nanoscale 7 (2015) 8233.
T. Wang, Y. Xu, W. Ling, A. Mosa, S. Liu, Z. Lin, H. Wang and X. Hu, Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation, Environ. Int. (2024) 108499.
J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li and M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles, J. Biomed. Mater. Res. Part A 80 (2007) 333.
Y. Y. Xu, L. Wang, T. Wu and R. M. Wang, Magnetic properties of α-Fe2O3 nanopallets, Rare Metals 38 (2019) 14.
J. N. Park, P. Zhang, Y. S. Hu and E. W. McFarland, Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion, Nanotechnol. 21 (2010) 225708.
B. D. L. Mendes and A. Kontny, Restoration and transformation: The response of shocked and oxidized magnetite to temperature, J. Geophys. Res. Solid Earth 129 (2024) e2023JB027244.
L. E. Lagoeiro, Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals, J. Metamorph. Geol. 16 (2024) 415.
J. Ning, P. Gao, S. Yuan, Y. Han, Y. Sun and W. Li, Highly efficient and green separation of iron from complex low-grade polymetallic ore via hydrogen-based mineral phase transformation, Powder Technol. 433 (2024) 119177.
U. S. Khan, A. Manan, N. Khan, A. Mahmood and A. Rahim, Transformation mechanism of magnetite nanoparticles, Mater. Sci.-Poland 33 (2015) 278.
G. Kletetschka, P. J. Wasilewski and P. T. Taylor, Hematite vs. magnetite as the signature for planetary magnetic anomalies?, Phys. Earth Planet. Inter. 119 (2000) 259.
S. S. Pati, L. H. Singh, J. M. Ochoa, E. M. Guimarãesa, M. J. A. Sales, J. A. H. Coaquira, A. C. Oliveira and V. K. Garg, Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600̊C in Fe3O4 nanoparticles, Mater. Res. Express 2 (2015) 045003.
X. Guoxi and X. Yuebin, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol-gel auto-combustion route using used batteries, Mater. Lett. 164 (2016) 444.
S. Y. Kazemi, P. Biparva and R. Pourfaraj, Self-synthesis of superparamagnetic α-Fe2O3 and Fe3O4 nanoparticles: an eco-friendly and economic process, J. Iran. Chem. Soc. 18 (2021) 3399.
F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J. Y. Piquemal, L. Sicard and G. Viau, The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions, Chem. Soc. Rev. 47 (2018) 5187.
N. V. Long, N. T. Nhat Hang and H. V. Cuu, Micro/nanosized ferrite and hexaferrite structures: The polyol processes for synthesis, Int. J. Nanomater. Nanotechnol. Nanomed. 9 (2023) 024.
N. V. Long, N. T. N. Hang, Y. Yang and M. Nogami, Synthesis of cobalt and its metallic magnetic nanoparticles, Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, Cham: Springer International Publishing (2022). R. C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2022) 1191.
Y. Tian, D. Wu, X. Jia, B. Yu and S. Zhan, Core-shell nanostructure of α-Fe2O3/Fe3O4: synthesis and photocatalysis for methyl orange, J. Nanomater. 2011 (2011) 837123.
H. M. Z. H. El Ghandoor, H. M. Zidan, M. M. Khalil and M. I. M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles, Int. J. Electrochem. Sci. 7 (2012) 5734.
L. Li, C. He, W. Lei, P. Gao and T. Lei, In situ synthesis of Fe2O3/Fe3O4 nanoarray hybrid as highly effective electrocatalysts for alkaline hydrogen evolution, J. Alloys Compd. 978 (2024) 173501.
X. H. Liu, W. B. Cui, W. Liu, X. G. Zhao, D. Li and Z. D. Zhang, Exchange bias and phase transformation in α-Fe2O3/Fe3O4 nanocomposites, J. Alloys Compd. 475(2009) 42.
J. Ji, Y. Huang, J. Yin, X. Zhao, X. Cheng, S. He, X. Li, J. He and J. Liu, Synthesis and electromagnetic and microwave absorption properties of monodispersive Fe3O4/α-Fe2O3 composites, ACS Appl. Nano Mater. 1(8) (2018) 3935.
T. Arun, K. Prabakaran, R. Udayabhaskar, R. V. Mangalaraja and A. Akbari-Fakhrabadi, Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications, Appl. Surf. Sci. 485 (2019) 147.
N. V. Long, Y. Yang, C. M. Thi, N. Van Minh, Y. Cao and M. Nogami, The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells, Nano Energy 2 (2013) 636.
N. V. Long, Y. Yang, M. Yuasa, C. M. Thi, Y. Cao, T. Nann and M. Nogami, Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment, RSC Adv. 4 (2014) 6383.
N. V. Long, Y. Yang, T. Teranishi, C. M. Thi, Y Cao and M. Nogami, Synthesis and magnetism of hierarchical iron oxide particles, Mater. Design 86 (2015) 797.
A. Jafari, S.F. Shayesteh, M. Salouti, and K. Boustani, Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles, J. Magn. Magn. Mater. 379 (2015) 305.
S. B. Attanayake, A. Chanda, R. Das, M. H. Phan and H. Srikanth, Effects of annealing temperature on the magnetic properties of highly crystalline biphase iron oxide nanorods, AIP Adv. 13 (2023) 025333.

Downloads

Published

24-07-2024

How to Cite

[1]
T. N. H. Nguyen, H. P. Le, V. C. Ho, H. T. Nguyen, and N. V. Long, “Transformation of ferromagnetic properties in Fe\(_3\)O\(_4\) to \(\alpha-\textbf{Fe}_{2}\textbf{O}_{3}\) by the polyol process and heat treatment”, Comm. Phys., vol. 34, no. 3, p. 275, Jul. 2024.

Issue

Section

Papers
Received 21-04-2024
Accepted 15-07-2024
Published 24-07-2024