Opto-electronic Properties of Small ZnO\(_2\) Nanoparticles: First-Principles Insights
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16674Keywords:
density functional theory, opto-electronic properties, Zinc peroxide, nanoparticles.Abstract
We performed density functional theory based first-principles calculations to investigate the opto-electronic properties of small ZnO2 nanoparticles. We have shown that these ZnO2 nanoparticles can exhibit either semiconductor or metallic properties depending on the morphology and sizes of the nanoparticles defined by Miller indices. The absorption spectra computed
from the real and imaginary parts of the dielectric functions demonstrate that these nanoparticles exhibit rich optical features with highly spatial anisotropy in the visible light range, suggesting that these newly obtained configurations strongly influence the electronic structures of ZnO2 nanoparticles. Our results propose the potential application of using Zinc peroxide nanoparicles
as prospective building blocks for developing early diagnosis nanodevices in drug industry.
Downloads
Metrics
References
A. Astefanei, O. N´u˜nez and M. T. Galceran, Characterisation and determination of fullerenes: a critical review,
Anal. Chim. Acta 882 (2015) 1.
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. DOI: https://doi.org/10.1038/354056a0
S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603. DOI: https://doi.org/10.1038/363603a0
N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Physica E: Low-dimensional Systems and Nanostructures 114 (2019) 113572. DOI: https://doi.org/10.1016/j.physe.2019.113572
N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons, Journal of Physics and Chemistry of Solids (2020) 109528. DOI: https://doi.org/10.1016/j.jpcs.2020.109528
D. K. Nguyen, N. T. T. Tran, T. T. Nguyen and M.-F. Lin, Diverse electronic and magnetic properties of chlorination-related graphene nanoribbons, Scientific reports 8 (2018) 1. DOI: https://doi.org/10.1038/s41598-018-35627-6
J. E. Lee, N. Lee, T. Kim, J. Kim and T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications, Accounts of chemical research 44 (2011) 893. DOI: https://doi.org/10.1021/ar2000259
H. Barrak, T. Saied, P. Chevallier, G. Laroche, A. M’nif and A. H. Hamzaoui, Synthesis, characterization, and functionalization of zno nanoparticles by n-(trimethoxysilylpropyl) ethylenediamine triacetic acid (tmsedta): Investigation of the interactions between phloroglucinol and zno@ tmsedta, Arabian Journal of Chemistry 12 (2019) 4340. DOI: https://doi.org/10.1016/j.arabjc.2016.04.019
M. Mansha, A. Qurashi, N. Ullah, F. O. Bakare, I. Khan and Z. H. Yamani, Synthesis of in2o3/graphene heterostructure and their hydrogen gas sensing properties, Ceramics International 42 (2016) 11490. DOI: https://doi.org/10.1016/j.ceramint.2016.04.035
I. Rawal and A. Kaur, Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application, Sensors and Actuators A: Physical 203 (2013) 92. DOI: https://doi.org/10.1016/j.sna.2013.08.023
I. Khan, Z. H. Yamani, A. Qurashi et al., Sonochemical-driven ultrafast facile synthesis of sno2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties, Ultrasonics sonochemistry 34 (2017) 484. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.025
M. Ganesh, P. Hemalatha, M. M. Peng and H. T. Jang, One pot synthesized li, zr doped porous silica nanoparticle for low temperature CO2 adsorption, Arabian Journal of Chemistry 10 (2017) S1501. DOI: https://doi.org/10.1016/j.arabjc.2013.04.031
M. Shaalan, M. Saleh, M. El-Mahdy and M. El-Matbouli, Recent progress in applications of nanoparticles in fish medicine: A review, Nanomedicine: Nanotechnology, Biology and Medicine 12 (2016) 701. DOI: https://doi.org/10.1016/j.nano.2015.11.005
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical reviews 108 (2008) 2064. DOI: https://doi.org/10.1021/cr068445e
N. T. Tien, D. N. Thao, P. T. B. Thao and D. N. Quang, Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction, Journal of Applied Physics 119 (2016) 214304. DOI: https://doi.org/10.1063/1.4953030
J. Zhang and M. Saltzman, Engineering biodegradable nanoparticles for drug and gene delivery, Chemical Engineering Progress 109 (2013) 25.
S. Gupta, Y. Pathak, M. K. Gupta and S. P. Vyas, Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted, Artificial Cells, Nanomedicine, and Biotechnology 47 (2019) 4066. DOI: https://doi.org/10.1080/21691401.2019.1677680
S. Kunjachan, J. Ehling, G. Storm, F. Kiessling and T. Lammers, Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects, Chemical reviews 115 (2015) 10907. DOI: https://doi.org/10.1021/cr500314d
M. Taghavi, M. Tabatabaee, M. H. Ehrampoush, M. T. Ghaneian, M. Afsharnia, A. Alami et al., Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites, J. Mol. Liq. 249 (2018) 546. DOI: https://doi.org/10.1016/j.molliq.2017.11.031
J. K. Rajput, T. K. Pathak, V. Kumar, H. Swart and L. Purohit, CdO:ZnO nanocomposite thin films for oxygen gas sensing at low temperature, Materials Science and Engineering: B 228 (2018) 241 . DOI: https://doi.org/10.1016/j.mseb.2017.12.002
B. Boro, B. Gogoi, B. Rajbongshi and A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review, Renewable and Sustainable Energy Reviews 81 (2018) 2264. DOI: https://doi.org/10.1016/j.rser.2017.06.035
A. Escobedo-Morales, R. Esparza, A. Garc´ıa-Ruiz, A. Aguilar, E. Rubio-Rosas and R. P´erez, Structural and vibrational properties of hydrothermally grown ZnO2 nanoparticles, Journal of Crystal Growth 316 (2011) 37. DOI: https://doi.org/10.1016/j.jcrysgro.2010.12.057
L. Rom´an, D. Maurtua, F. Paraguay-Delgado, J. L. Sol´ıs and M. M. G´omez, Green synthesis of ZnO2 nanoparticles and their annealing transformation into ZnO nanoparticles: Characterization and antimicrobial activity, Journal of Nanoscience and Nanotechnology 16 (2016) 9889. DOI: https://doi.org/10.1166/jnn.2016.12399
A. Kołodziejczak-Radzimska, E. Markiewicz and T. Jesionowski, Structural characterisation of ZnO particles obtained by the emulsion precipitation method, Journal of Nanomaterials 2012 (2012) . DOI: https://doi.org/10.1155/2012/656353
P. B. Khoza, M. J. Moloto and L. M. Sikhwivhilu, The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave, Journal of Nanotechnology
(2012) 195106.
H. Bai and X. Liu, Green hydrothermal synthesis and photoluminescence property of ZnO2 nanoparticles, Materials Letters 64 (2010) 341. DOI: https://doi.org/10.1016/j.matlet.2009.11.008
N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y. J. Wu and K. Kakegawa, Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide, Physical Chemistry Chemical Physics 5 (2003) 929. DOI: https://doi.org/10.1039/b210990e
W. Chen, Y. Lu, M. Wang, L. Kroner, H. Paul, H.-J. Fecht et al., Synthesis, thermal stability and properties of ZnO2 nanoparticles, The journal of physical chemistry C 113 (2009) 1320. DOI: https://doi.org/10.1021/jp808714v
M. Egblewogbe, G. Gebreyesus and S. A. Atarah, Determination of the growth rate of hydrothermally synthesised ZnO2 crystallites, Journal of Nano Research 50 (2017) 41. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.50.41
C. Bergs, P. Simon, Y. Prots and A. Pich, Ultrasmall functional ZnO2 nanoparticles: synthesis, characterization and oxygen release properties, RSC advances 6 (2016) 84777. DOI: https://doi.org/10.1039/C6RA16009C
A. Chatzigoulas, K. Karathanou, D. Dellis and Z. Cournia, Nanocrystal: A web-based crystallographic tool for the construction of nanoparticles based on their crystal habit, Journal of chemical information and modeling 58 (2018) 2380. DOI: https://doi.org/10.1021/acs.jcim.8b00269
K. Persson, Materials data on ZnO2 (sg:205) by materials project, 7, 2014.
J. Taylor, H. Guo and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Physical Review B 63 (2001) 245407. DOI: https://doi.org/10.1103/PhysRevB.63.245407
M. Brandbyge, J.-L. Mozos, P. Ordej´on, J. Taylor and K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B 65 (2002) 165401. DOI: https://doi.org/10.1103/PhysRevB.65.165401
M. Quinten, Optical properties of nanoparticle systems: Mie and beyond. John Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9783527633135
D. Singh, S. K. Gupta, Y. Sonvane and I. Lukaˇcevi´c, Antimonene: a monolayer material for ultraviolet optical nanodevices, Journal of Materials Chemistry C 4 (2016) 6386. DOI: https://doi.org/10.1039/C6TC01913G
M. M. Monshi, S. M. Aghaei and I. Calizo, Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster, Physics Letters A 382 (2018) 1171. DOI: https://doi.org/10.1016/j.physleta.2018.03.001
M. P. Desjarlais, Density functional calculations of the reflectivity of shocked xenon with ionization based gap corrections, Contributions to Plasma Physics 45 (2005) 300. DOI: https://doi.org/10.1002/ctpp.200510034
J. E. Morales-Mendoza, F. Paraguay-Delgado, J. Moller, G. Herrera-P´erez and N. Pariona, Structure and optical properties of ZnO and ZnO2 nanoparticles, Journal of Nano Research 56 (2019) 49. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.56.49
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).