Vol. 32 No. 4 (2022)

Opto-electronic Properties of Small ZnO\(_2\) Nanoparticles: First-Principles Insights

Nguyen Thanh Tien
College of Natural Science, Can Tho University
Dang Minh Triet
School of Education, Can Tho University
Pham Thi Bich Thao
College of Natural Science, Can Tho University

Published 05-07-2022


  • density functional theory, opto-electronic properties, Zinc peroxide, nanoparticles.

How to Cite

Tien, N. T., Triet, D. M., & Thao, P. T. B. (2022). Opto-electronic Properties of Small ZnO\(_2\) Nanoparticles: First-Principles Insights. Communications in Physics, 32(4), 423. https://doi.org/10.15625/0868-3166/16674


We performed density functional theory based first-principles calculations to investigate the opto-electronic properties of small ZnO2 nanoparticles. We have shown that these ZnO2 nanoparticles can exhibit either semiconductor or metallic properties depending on the morphology and sizes of the nanoparticles defined by Miller indices. The absorption spectra computed
from the real and imaginary parts of the dielectric functions demonstrate that these nanoparticles exhibit rich optical features with highly spatial anisotropy in the visible light range, suggesting that these newly obtained configurations strongly influence the electronic structures of ZnO2 nanoparticles. Our results propose the potential application of using Zinc peroxide nanoparicles
as prospective building blocks for developing early diagnosis nanodevices in drug industry.


Download data is not yet available.


Metrics Loading ...


  1. A. Astefanei, O. N´u˜nez and M. T. Galceran, Characterisation and determination of fullerenes: a critical review,
  2. Anal. Chim. Acta 882 (2015) 1.
  3. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. DOI: https://doi.org/10.1038/354056a0
  4. S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603. DOI: https://doi.org/10.1038/363603a0
  5. N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Physica E: Low-dimensional Systems and Nanostructures 114 (2019) 113572. DOI: https://doi.org/10.1016/j.physe.2019.113572
  6. N. T. Tien, P. T. B. Thao, V. T. Phuc and R. Ahuja, Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons, Journal of Physics and Chemistry of Solids (2020) 109528. DOI: https://doi.org/10.1016/j.jpcs.2020.109528
  7. D. K. Nguyen, N. T. T. Tran, T. T. Nguyen and M.-F. Lin, Diverse electronic and magnetic properties of chlorination-related graphene nanoribbons, Scientific reports 8 (2018) 1. DOI: https://doi.org/10.1038/s41598-018-35627-6
  8. J. E. Lee, N. Lee, T. Kim, J. Kim and T. Hyeon, Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications, Accounts of chemical research 44 (2011) 893. DOI: https://doi.org/10.1021/ar2000259
  9. H. Barrak, T. Saied, P. Chevallier, G. Laroche, A. M’nif and A. H. Hamzaoui, Synthesis, characterization, and functionalization of zno nanoparticles by n-(trimethoxysilylpropyl) ethylenediamine triacetic acid (tmsedta): Investigation of the interactions between phloroglucinol and zno@ tmsedta, Arabian Journal of Chemistry 12 (2019) 4340. DOI: https://doi.org/10.1016/j.arabjc.2016.04.019
  10. M. Mansha, A. Qurashi, N. Ullah, F. O. Bakare, I. Khan and Z. H. Yamani, Synthesis of in2o3/graphene heterostructure and their hydrogen gas sensing properties, Ceramics International 42 (2016) 11490. DOI: https://doi.org/10.1016/j.ceramint.2016.04.035
  11. I. Rawal and A. Kaur, Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application, Sensors and Actuators A: Physical 203 (2013) 92. DOI: https://doi.org/10.1016/j.sna.2013.08.023
  12. I. Khan, Z. H. Yamani, A. Qurashi et al., Sonochemical-driven ultrafast facile synthesis of sno2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties, Ultrasonics sonochemistry 34 (2017) 484. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.025
  13. M. Ganesh, P. Hemalatha, M. M. Peng and H. T. Jang, One pot synthesized li, zr doped porous silica nanoparticle for low temperature CO2 adsorption, Arabian Journal of Chemistry 10 (2017) S1501. DOI: https://doi.org/10.1016/j.arabjc.2013.04.031
  14. M. Shaalan, M. Saleh, M. El-Mahdy and M. El-Matbouli, Recent progress in applications of nanoparticles in fish medicine: A review, Nanomedicine: Nanotechnology, Biology and Medicine 12 (2016) 701. DOI: https://doi.org/10.1016/j.nano.2015.11.005
  15. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical reviews 108 (2008) 2064. DOI: https://doi.org/10.1021/cr068445e
  16. N. T. Tien, D. N. Thao, P. T. B. Thao and D. N. Quang, Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction, Journal of Applied Physics 119 (2016) 214304. DOI: https://doi.org/10.1063/1.4953030
  17. J. Zhang and M. Saltzman, Engineering biodegradable nanoparticles for drug and gene delivery, Chemical Engineering Progress 109 (2013) 25.
  18. S. Gupta, Y. Pathak, M. K. Gupta and S. P. Vyas, Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted, Artificial Cells, Nanomedicine, and Biotechnology 47 (2019) 4066. DOI: https://doi.org/10.1080/21691401.2019.1677680
  19. S. Kunjachan, J. Ehling, G. Storm, F. Kiessling and T. Lammers, Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects, Chemical reviews 115 (2015) 10907. DOI: https://doi.org/10.1021/cr500314d
  20. M. Taghavi, M. Tabatabaee, M. H. Ehrampoush, M. T. Ghaneian, M. Afsharnia, A. Alami et al., Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites, J. Mol. Liq. 249 (2018) 546. DOI: https://doi.org/10.1016/j.molliq.2017.11.031
  21. J. K. Rajput, T. K. Pathak, V. Kumar, H. Swart and L. Purohit, CdO:ZnO nanocomposite thin films for oxygen gas sensing at low temperature, Materials Science and Engineering: B 228 (2018) 241 . DOI: https://doi.org/10.1016/j.mseb.2017.12.002
  22. B. Boro, B. Gogoi, B. Rajbongshi and A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review, Renewable and Sustainable Energy Reviews 81 (2018) 2264. DOI: https://doi.org/10.1016/j.rser.2017.06.035
  23. A. Escobedo-Morales, R. Esparza, A. Garc´ıa-Ruiz, A. Aguilar, E. Rubio-Rosas and R. P´erez, Structural and vibrational properties of hydrothermally grown ZnO2 nanoparticles, Journal of Crystal Growth 316 (2011) 37. DOI: https://doi.org/10.1016/j.jcrysgro.2010.12.057
  24. L. Rom´an, D. Maurtua, F. Paraguay-Delgado, J. L. Sol´ıs and M. M. G´omez, Green synthesis of ZnO2 nanoparticles and their annealing transformation into ZnO nanoparticles: Characterization and antimicrobial activity, Journal of Nanoscience and Nanotechnology 16 (2016) 9889. DOI: https://doi.org/10.1166/jnn.2016.12399
  25. A. Kołodziejczak-Radzimska, E. Markiewicz and T. Jesionowski, Structural characterisation of ZnO particles obtained by the emulsion precipitation method, Journal of Nanomaterials 2012 (2012) . DOI: https://doi.org/10.1155/2012/656353
  26. P. B. Khoza, M. J. Moloto and L. M. Sikhwivhilu, The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave, Journal of Nanotechnology
  27. (2012) 195106.
  28. H. Bai and X. Liu, Green hydrothermal synthesis and photoluminescence property of ZnO2 nanoparticles, Materials Letters 64 (2010) 341. DOI: https://doi.org/10.1016/j.matlet.2009.11.008
  29. N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y. J. Wu and K. Kakegawa, Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide, Physical Chemistry Chemical Physics 5 (2003) 929. DOI: https://doi.org/10.1039/b210990e
  30. W. Chen, Y. Lu, M. Wang, L. Kroner, H. Paul, H.-J. Fecht et al., Synthesis, thermal stability and properties of ZnO2 nanoparticles, The journal of physical chemistry C 113 (2009) 1320. DOI: https://doi.org/10.1021/jp808714v
  31. M. Egblewogbe, G. Gebreyesus and S. A. Atarah, Determination of the growth rate of hydrothermally synthesised ZnO2 crystallites, Journal of Nano Research 50 (2017) 41. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.50.41
  32. C. Bergs, P. Simon, Y. Prots and A. Pich, Ultrasmall functional ZnO2 nanoparticles: synthesis, characterization and oxygen release properties, RSC advances 6 (2016) 84777. DOI: https://doi.org/10.1039/C6RA16009C
  33. A. Chatzigoulas, K. Karathanou, D. Dellis and Z. Cournia, Nanocrystal: A web-based crystallographic tool for the construction of nanoparticles based on their crystal habit, Journal of chemical information and modeling 58 (2018) 2380. DOI: https://doi.org/10.1021/acs.jcim.8b00269
  34. K. Persson, Materials data on ZnO2 (sg:205) by materials project, 7, 2014.
  35. J. Taylor, H. Guo and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Physical Review B 63 (2001) 245407. DOI: https://doi.org/10.1103/PhysRevB.63.245407
  36. M. Brandbyge, J.-L. Mozos, P. Ordej´on, J. Taylor and K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B 65 (2002) 165401. DOI: https://doi.org/10.1103/PhysRevB.65.165401
  37. M. Quinten, Optical properties of nanoparticle systems: Mie and beyond. John Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9783527633135
  38. D. Singh, S. K. Gupta, Y. Sonvane and I. Lukaˇcevi´c, Antimonene: a monolayer material for ultraviolet optical nanodevices, Journal of Materials Chemistry C 4 (2016) 6386. DOI: https://doi.org/10.1039/C6TC01913G
  39. M. M. Monshi, S. M. Aghaei and I. Calizo, Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster, Physics Letters A 382 (2018) 1171. DOI: https://doi.org/10.1016/j.physleta.2018.03.001
  40. M. P. Desjarlais, Density functional calculations of the reflectivity of shocked xenon with ionization based gap corrections, Contributions to Plasma Physics 45 (2005) 300. DOI: https://doi.org/10.1002/ctpp.200510034
  41. J. E. Morales-Mendoza, F. Paraguay-Delgado, J. Moller, G. Herrera-P´erez and N. Pariona, Structure and optical properties of ZnO and ZnO2 nanoparticles, Journal of Nano Research 56 (2019) 49. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.56.49