Near Infrared Metal-insulator-metal Surface Plasmon Resonances for Refractive Index Sensors


  • Thi Hong Cam Hoang University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology of Vietnam, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Tuan Minh Ha University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Van Dai Pham Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Quang Minh Ngo University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam



This work reports the optical properties of surface plasmon resonance (SPR) based on the metal-insulator-metal (MIM) structure towards a refractive index sensor. The MIM-SPR structure operating near infrared region consists of lateral periodicity of subwavelength gold patterns placed on a stack of thin silica spacer and silver film (acting as a reflector) on a silicon substrate. The reflection spectra and the electric field distributions of MIM-SPR structures can be tuned by modifying the geometrical properties and have been numerically investigated by using Lumerical’s finite-difference time-domain (FDTD) solutions. The square lattice configuration of 1200 nm to 1400 nm pitch of gold micro-disks of thickness from 80 nm to 120 nm have been conducted. The size of these considered gold patterns, i.e., the diameter of the micro-disks is in the range of 900 nm to 1000 nm. The proposed MIM-SPR structure possessing sensitivity of 370 nm per refractive index unit (RIU), can be applicable for a wide variety of plasmonic sensing, in particular for refractometric biosensors.


Download data is not yet available.


Metrics Loading ...


S. A. Maier, “Plasmonics: Fundamentals and Applications”, Springer, USA, 2007. DOI:

J. Jatschka, A. Dathe, A. Csáki, W. Fritzsche, and O. Stranik, “Propagating and localized surface plasmon resonance sensing – a critical comparison based on measurements and theory,” Biosens. Bioelectron. 7 (2016) 62-70. DOI:

J. Jana, M. Ganguly, and T. Pal, “Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application,” RSC Adv. 6 (2016) 86174. DOI:

M. S. Nezami and E. Gordon, “Localized and propagating surface plasmon resonances in aperture-based third harmonic generation,” Opt. Express 23 (2015) 251035. DOI:

Q. Ma, Q. Liu, S. Feng, Y. Chen, and W. Cai, “Interaction properties between different modes of localized and propagating surface plasmons in a dimer nanoparticle array,” Opt. Eng. 57 (2018) 087108. DOI:

E. Petryayeva and U. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review,” Anal. Chim. Acta 706 (2011) 8-24. DOI:

Y. Mantri and J. V. Jokerst, “Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging,” ACS Nano 14 (2020) 9408-9422. DOI:

C. L. Bayer, S. Y. Nam, Y-S. Chen, and S. Y. Emelianov, “Photoacoustic signal amplification through plasmonic nanoparticle aggregation,” J. Biomed. Opt. 18 (2013) 016001. DOI:

K. Turcheniuk, T. Dumych, R. Bilyy, V. Turcheniuk, J. Bouckaert, V. Vovk, V. Chopyak, V. Zaitsev, P. Mariot, N. Prevarskaya, R. Boukherroub, and S. Szunerits, “Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites,” RSC Adv. 6 (2016) 1600-1610. DOI:

J. S. Seok and H. Ju, “Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review,” Micromachines 11 (2020) 0895. DOI:

N. Kongsuwan, X. Xiong, P. Bai, J.-B. You, C. E. Png, L. Wu, and O. Hess, “Quantum Plasmonic Immunoassay Sensing,” Nano Lett. 19 (2019) 5853-5861. DOI:

A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, “A comprehensive review on plasmonic-based biosensors used in viral diagnostics,” Commun. Biol. (2021) DOI:">

T. B. Pham, T. H. C. Hoang, V. H Pham, V. C. Nguyen, T. V. Nguyen, D. C. Vu, V. H. Pham, and H. Bui, “Detection of permethrin pesticide using silver nano-dendrites SERS on optical fibre fabricated by laser-assisted photochemical method,” Sci. Rep. (2019), DOI:">

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review ,” IEEE Sens. J. 7 (2007) 1118-1129. DOI:

X. Wang, H. Jiang, J. Chen, P. Wang, Yo. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express 19 (2011) 19415-19421. DOI:

Y. Chen and H. Ming, “Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor,” Photonic Sens. 2 (2012) 37-49. DOI:

G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and Wei Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45 (2012) 205102. DOI:

C-Y. Chang, H-T. Lin, M-S Lai, T-Y Shieh, C-C Peng, M-H Shih, and Y-C Tung, “Flexible Localized Surface Plasmon Resonance Sensor with Metal– Insulator–Metal Nanodisks on PDMS Substrate,” Sci. Rep. (2018), DOI:10.1038/s41598-018-30180-8. DOI:, Fri. 10 Sep. 2021., Fri. 10 Sep. 2021.">

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22 (2014) 12189-12199. DOI:

J. Cao, T. Sun and K.T.V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B Chem. (2014), DOI:">

N. A. Bang, P. T. Thom, and H. N. Nhat, “A comparative study of classical approaches to surface plasmon resonance of colloidal gold nanorods,” Gold Bull. 46 (2013) 91-96. DOI:

I. Alber, W. Sigle, Sv. Muller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, and M. E. Toimil-Molares, “Visualization of Multipolar Longitudinal and Transversal Surface Plasmon Modes in Nanowire Dimers,” ACS Nano 12 (2011) 9845-9853. DOI:

S. Belan and S. Vergeles, “Plasmon mode propagation in array of closely spaced metallic cylinders,” Opt. Mater. Express, 5 (2015) 130-141. DOI:

L. Ma, S. Liang, X-L. Liu, D-J. Yang, L. Zhou, and Q-Q. Wang, “Synthesis of Dumbbell-Like Gold–Metal Sulfide Core–Shell Nanorods with Largely Enhanced Transverse Plasmon Resonance in Visible Region and Efficiently Improved Photocatalytic Activity,” Adv. Funct. Mater. (2014) DOI: 10.1002/adfm.201403398. DOI:

O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study,” Opt. Express 19 (2011) 15371–15379. DOI:

Q. Ruan, C. Fang, R. Jiang, H. Jia, Y. Lai, J. Wang, and H‐Q. Linc, “Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods,” Nanoscale (2015) DOI: 10.1039/C5NR08521G. DOI:

S. Hou, X. Hu, T. Wen, W. Liu, and X. Wu, “Core–Shell Noble Metal Nanostructures Templated by Gold Nanorods,” Adv. Mater. (2013) DOI: 10.1002/adma.201301169. DOI:

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34 (2009) 244-246. DOI:

Z. Zhang, L. Wang, H. Hu H, K. Li, X. Ma, and G. Song, “A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film,” Chin. Phys. B 22 (2013) 104213. DOI:

S. Wang, X. Sun, M. Ding, G. Peng, Y. Qi, Y. Wang and J. Ren, “The investigation of an LSPR refractive index sensor based on periodic gold nanorings array,” J. Phys. D: Appl. Phys. 51 (2018) 045101. DOI:




How to Cite

Hoang, T. H. C., Ha, T. M., Pham, V. D., & Ngo, Q. M. (2022). Near Infrared Metal-insulator-metal Surface Plasmon Resonances for Refractive Index Sensors. Communications in Physics, 32(3), 275.




Most read articles by the same author(s)