Published 27-03-2022
How to Cite
Abstract
This work reports the optical properties of surface plasmon resonance (SPR) based on the metal-insulator-metal (MIM) structure towards a refractive index sensor. The MIM-SPR structure operating near infrared region consists of lateral periodicity of subwavelength gold patterns placed on a stack of thin silica spacer and silver film (acting as a reflector) on a silicon substrate. The reflection spectra and the electric field distributions of MIM-SPR structures can be tuned by modifying the geometrical properties and have been numerically investigated by using Lumerical’s finite-difference time-domain (FDTD) solutions. The square lattice configuration of 1200 nm to 1400 nm pitch of gold micro-disks of thickness from 80 nm to 120 nm have been conducted. The size of these considered gold patterns, i.e., the diameter of the micro-disks is in the range of 900 nm to 1000 nm. The proposed MIM-SPR structure possessing sensitivity of 370 nm per refractive index unit (RIU), can be applicable for a wide variety of plasmonic sensing, in particular for refractometric biosensors.
Downloads
Metrics
References
- S. A. Maier, “Plasmonics: Fundamentals and Applications”, Springer, USA, 2007. DOI: https://doi.org/10.1007/0-387-37825-1
- J. Jatschka, A. Dathe, A. Csáki, W. Fritzsche, and O. Stranik, “Propagating and localized surface plasmon resonance sensing – a critical comparison based on measurements and theory,” Biosens. Bioelectron. 7 (2016) 62-70. DOI: https://doi.org/10.1016/j.sbsr.2016.01.003
- J. Jana, M. Ganguly, and T. Pal, “Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application,” RSC Adv. 6 (2016) 86174. DOI: https://doi.org/10.1039/C6RA14173K
- M. S. Nezami and E. Gordon, “Localized and propagating surface plasmon resonances in aperture-based third harmonic generation,” Opt. Express 23 (2015) 251035. DOI: https://doi.org/10.1364/OE.23.032006
- Q. Ma, Q. Liu, S. Feng, Y. Chen, and W. Cai, “Interaction properties between different modes of localized and propagating surface plasmons in a dimer nanoparticle array,” Opt. Eng. 57 (2018) 087108. DOI: https://doi.org/10.1117/1.OE.57.8.087108
- E. Petryayeva and U. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review,” Anal. Chim. Acta 706 (2011) 8-24. DOI: https://doi.org/10.1016/j.aca.2011.08.020
- Y. Mantri and J. V. Jokerst, “Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging,” ACS Nano 14 (2020) 9408-9422. DOI: https://doi.org/10.1021/acsnano.0c05215
- C. L. Bayer, S. Y. Nam, Y-S. Chen, and S. Y. Emelianov, “Photoacoustic signal amplification through plasmonic nanoparticle aggregation,” J. Biomed. Opt. 18 (2013) 016001. DOI: https://doi.org/10.1117/1.JBO.18.1.016001
- K. Turcheniuk, T. Dumych, R. Bilyy, V. Turcheniuk, J. Bouckaert, V. Vovk, V. Chopyak, V. Zaitsev, P. Mariot, N. Prevarskaya, R. Boukherroub, and S. Szunerits, “Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites,” RSC Adv. 6 (2016) 1600-1610. DOI: https://doi.org/10.1039/C5RA24662H
- J. S. Seok and H. Ju, “Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review,” Micromachines 11 (2020) 0895. DOI: https://doi.org/10.3390/mi11100895
- N. Kongsuwan, X. Xiong, P. Bai, J.-B. You, C. E. Png, L. Wu, and O. Hess, “Quantum Plasmonic Immunoassay Sensing,” Nano Lett. 19 (2019) 5853-5861. DOI: https://doi.org/10.1021/acs.nanolett.9b01137
- A. M. Shrivastav, U. Cvelbar, and I. Abdulhalim, “A comprehensive review on plasmonic-based biosensors used in viral diagnostics,” Commun. Biol. (2021) https://doi.org/10.1038/s42003-020-01615-8. DOI: https://doi.org/10.1038/s42003-020-01615-8
- T. B. Pham, T. H. C. Hoang, V. H Pham, V. C. Nguyen, T. V. Nguyen, D. C. Vu, V. H. Pham, and H. Bui, “Detection of permethrin pesticide using silver nano-dendrites SERS on optical fibre fabricated by laser-assisted photochemical method,” Sci. Rep. (2019), https://doi.org/10.1038/s41598-019-49077-1. DOI: https://doi.org/10.1038/s41598-019-49077-1
- A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review ,” IEEE Sens. J. 7 (2007) 1118-1129. DOI: https://doi.org/10.1109/JSEN.2007.897946
- X. Wang, H. Jiang, J. Chen, P. Wang, Yo. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express 19 (2011) 19415-19421. DOI: https://doi.org/10.1364/OE.19.019415
- Y. Chen and H. Ming, “Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor,” Photonic Sens. 2 (2012) 37-49. DOI: https://doi.org/10.1007/s13320-011-0051-2
- G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and Wei Lu, “A novel plasmonic resonance sensor based on an infrared perfect absorber,” J. Phys. D: Appl. Phys. 45 (2012) 205102. DOI: https://doi.org/10.1088/0022-3727/45/20/205102
- C-Y. Chang, H-T. Lin, M-S Lai, T-Y Shieh, C-C Peng, M-H Shih, and Y-C Tung, “Flexible Localized Surface Plasmon Resonance Sensor with Metal– Insulator–Metal Nanodisks on PDMS Substrate,” Sci. Rep. (2018), DOI:10.1038/s41598-018-30180-8. DOI: https://doi.org/10.1038/s41598-018-30180-8
- https://www.lumerical.com/products/fdtd/, Fri. 10 Sep. 2021.
- K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22 (2014) 12189-12199. DOI: https://doi.org/10.1364/OE.22.012189
- J. Cao, T. Sun and K.T.V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B Chem. (2014), http://dx.doi.org/10.1016/j.snb.2014.01.056. DOI: https://doi.org/10.1016/j.snb.2014.01.056
- N. A. Bang, P. T. Thom, and H. N. Nhat, “A comparative study of classical approaches to surface plasmon resonance of colloidal gold nanorods,” Gold Bull. 46 (2013) 91-96. DOI: https://doi.org/10.1007/s13404-013-0082-0
- I. Alber, W. Sigle, Sv. Muller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, and M. E. Toimil-Molares, “Visualization of Multipolar Longitudinal and Transversal Surface Plasmon Modes in Nanowire Dimers,” ACS Nano 12 (2011) 9845-9853. DOI: https://doi.org/10.1021/nn2035044
- S. Belan and S. Vergeles, “Plasmon mode propagation in array of closely spaced metallic cylinders,” Opt. Mater. Express, 5 (2015) 130-141. DOI: https://doi.org/10.1364/OME.5.000130
- L. Ma, S. Liang, X-L. Liu, D-J. Yang, L. Zhou, and Q-Q. Wang, “Synthesis of Dumbbell-Like Gold–Metal Sulfide Core–Shell Nanorods with Largely Enhanced Transverse Plasmon Resonance in Visible Region and Efficiently Improved Photocatalytic Activity,” Adv. Funct. Mater. (2014) DOI: 10.1002/adfm.201403398. DOI: https://doi.org/10.1002/adfm.201403398
- O. Nicoletti, M. Wubs, N. A. Mortensen, W. Sigle, P. A. van Aken, and P. A. Midgley, “Surface Plasmon Modes of a Single Silver Nanorod: An Electron Energy Loss Study,” Opt. Express 19 (2011) 15371–15379. DOI: https://doi.org/10.1364/OE.19.015371
- Q. Ruan, C. Fang, R. Jiang, H. Jia, Y. Lai, J. Wang, and H‐Q. Linc, “Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods,” Nanoscale (2015) DOI: 10.1039/C5NR08521G. DOI: https://doi.org/10.1039/C5NR08521G
- S. Hou, X. Hu, T. Wen, W. Liu, and X. Wu, “Core–Shell Noble Metal Nanostructures Templated by Gold Nanorods,” Adv. Mater. (2013) DOI: 10.1002/adma.201301169. DOI: https://doi.org/10.1002/adma.201301169
- Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34 (2009) 244-246. DOI: https://doi.org/10.1364/OL.34.000244
- Z. Zhang, L. Wang, H. Hu H, K. Li, X. Ma, and G. Song, “A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film,” Chin. Phys. B 22 (2013) 104213. DOI: https://doi.org/10.1088/1674-1056/22/10/104213
- S. Wang, X. Sun, M. Ding, G. Peng, Y. Qi, Y. Wang and J. Ren, “The investigation of an LSPR refractive index sensor based on periodic gold nanorings array,” J. Phys. D: Appl. Phys. 51 (2018) 045101. DOI: https://doi.org/10.1088/1361-6463/aaa06a