Vol. 31 No. 2 (2021)
Papers

Simulation Study on Supercontinuum Generation at Normal Dispersion Regime of a Carbon Disulfide-core Photonic Crystal Fiber

Bien Chu Van
Hong Duc University
Dinh Quang Ho
Vinh University
Le Thi Ha
Sam Son High School
Van Cao Long
University of Zielona Gora
Vu Van Hung
Office of Thanh Hoa People's Committee
Hieu Le Van
Hong Duc University

Published 08-01-2021

Keywords

  • Nonlinear optics,
  • photonic crystal fiber,
  • liquid,
  • supercontinuum generation.

How to Cite

Chu Van, B., Quang Ho, D., Thi Ha, L., Cao Long, V., Van Hung, V., & Le Van, H. (2021). Simulation Study on Supercontinuum Generation at Normal Dispersion Regime of a Carbon Disulfide-core Photonic Crystal Fiber. Communications in Physics, 31(2), 169. https://doi.org/10.15625/0868-3166/15564

Abstract

A photonic crystal fiber with a hollow core filled with carbon disulfide (CS2) is proposed as a new source of supercontinuum light. We numerically study guiding properties of modeled fibers including the dispersion and the effective mode area of the fundamental mode. As a result, octave spanning of the SC spectrum was achieved in the wavelength range of near-IR from 1.25 μm to 2.3 μm with 90 fs pulse and energy of 1.5 nJ at a pump wavelength of 1.55 μm. The proposed fibers are fully compatible with all-silica fiber systems, in particular, could be used for all-fiber SC sources and new low-cost all-fiber optical systems.

Downloads

Download data is not yet available.

References

  1. J. C. Knight, Nature. 424 (2003) 847-851.
  2. R. Buczynski, Acta Physica Polonica A. 106(2) (2004) 141.
  3. T. A. Birks, J. C. Knight, P. S. J. Russell, Optics Letters 2(13) (1997) 961.
  4. Z. Hui, D. Hou, Y. Zhang, S. Wei, and J. Xu, Fiber and Integrated Optics 38(2) (2019) 91.
  5. A. Bala, K. R. Chowdhury, M. B. Mia, and M. Faisal, Appl. Opt. 56 (2017) 7256.
  6. J. Lægsgaard, P.J. Roberts, and M. Bache, Optical and Quantum Electronics, 39(12-13) (2007) 995.
  7. J. M. Hsu, Optics Communications 361 (2016) 104.
  8. M. Guillon, K. Dholakia, and D. McGloin, Opt. Express 16 (2008) 7655.
  9. H. Tu and S. A. Boppart, Laser Photonics Rev.7(5) (2013) 628.
  10. W. J. Ling, K. Li. and Y. Y. Zuo, Applied Mechanics and Materials, 302 (2013) 194.
  11. H. Liu, Y. Yu, W. Song, Q. Jiang, and F. Pang, Opto-Electronic Advances, 2(2) (2019) 1800201.
  12. J. M. Dudley, G. Genty, and S. Coen, Rev. Modern Phys. 78(4) (2006) 1135.
  13. A. M. Heidt, J. Opt. Soc. Am. B 27 (2010) 550.
  14. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, Opt. Express, 19 (6) (2011) 4902.
  15. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, Opt. Express 14(21) (2006) 9854.
  16. A. V. Husakou, and J. Herrmann, Phys. Rev. Lett. 87(20) (2001) 203901.
  17. J. K. Ranka, R.S. Windeler, and A.J. Stentz, Opt. Lett. 25 (1) (2000) 25.
  18. Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and
  19. W. P. Qin, Laser Phys. Lett. 15(2) (2018) 025102.
  20. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, Appl. Sci. 8(5) (2018) 7071.
  21. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, Opt. Mater. Express. 3(9) (2013)
  22. L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach and R.
  23. Buczy´nski, J. Opt. 19(12) (2017) 125604.
  24. Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak and R.
  25. Buczy´nski, Appl. Opt. 57(14) (2018) 3738.
  26. H. V. Le, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Kasztelanic, and R. Buczy´nski, Laser Phys. 28(11) (2018)
  27. C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczy´nski, and
  28. J. Pniewski, Laser Phys. 29(7) (2019) 075107.
  29. L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczy´nski, and J.
  30. Pniewski, Laser Phys. 30(3) (2020) 035105.
  31. P. S. Maji and P. R. Chaudhuri, Optik 125 (2014) 5986.
  32. N. Munera and R. A. Herrera, Opt. Commun. 368 (2016) 185.
  33. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, Opt. Lett. 20(9) (1995) 988.
  34. E. K. Plyler, and C. J. Humphreys, J. Res. Nat. Bur. Standards 39 (1947) 59.
  35. Lumerical Solutions, Inc., http://www.lumerical.com.
  36. G. Stepniewski, R. Kasztelanic, D. Pysz, R. Stepien, M. Klimczak, R. Buczynski, Opt. Mater. Express 6(8)
  37. (2016) 2689.
  38. S. Kedenburg, M. Vieweg, T. Gissibl and H. Giessen, Opt. Mater. Express 2(11) (2012) 1588.
  39. G. P. Agrawal, Nonlinear fiber optics, 5th edn, Oxford: Academic Press, 2013.
  40. R. Zhang, J. Teipel and H. Giessen, Opt. Express 14(15) (2006) 6800.
  41. M. Chemnit, C. Gaida, M. Gebhardt, F. Stutzki J. Kobelke, A. Tunnermann, J. Limpert and M. A. Schmidt Opt.
  42. Express 26 (3) (2018) 3221.
  43. Z. Kang, F. Xu, J. Yuan , S. Member, F. Li , B. Yan, X. Zhou, Q. Wu , K. Wang, X. Sang, K. Long, S. Member
  44. and C. Yu IEEE J. Quantum Electron. 55(2) (2019) 1.