Simulation Study on Supercontinuum Generation at Normal Dispersion Regime of a Carbon Disulfide-core Photonic Crystal Fiber

Bien Chu Van, Dinh Quang Ho, Le Thi Ha, Van Cao Long, Vu Van Hung, Hieu Le Van
Author affiliations

Authors

  • Bien Chu Van Hong Duc University
  • Dinh Quang Ho Vinh University
  • Le Thi Ha Sam Son High School
  • Van Cao Long University of Zielona Gora
  • Vu Van Hung Office of Thanh Hoa People's Committee
  • Hieu Le Van Hong Duc University

DOI:

https://doi.org/10.15625/0868-3166/15564

Keywords:

Nonlinear optics, photonic crystal fiber, liquid, supercontinuum generation.

Abstract

A photonic crystal fiber with a hollow core filled with carbon disulfide (CS2) is proposed as a new source of supercontinuum light. We numerically study guiding properties of modeled fibers including the dispersion and the effective mode area of the fundamental mode. As a result, octave spanning of the SC spectrum was achieved in the wavelength range of near-IR from 1.25 μm to 2.3 μm with 90 fs pulse and energy of 1.5 nJ at a pump wavelength of 1.55 μm. The proposed fibers are fully compatible with all-silica fiber systems, in particular, could be used for all-fiber SC sources and new low-cost all-fiber optical systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J. C. Knight, Nature. 424 (2003) 847-851. DOI: https://doi.org/10.1038/nature01940

R. Buczynski, Acta Physica Polonica A. 106(2) (2004) 141. DOI: https://doi.org/10.12693/APhysPolA.106.141

T. A. Birks, J. C. Knight, P. S. J. Russell, Optics Letters 2(13) (1997) 961. DOI: https://doi.org/10.1364/OL.22.000961

Z. Hui, D. Hou, Y. Zhang, S. Wei, and J. Xu, Fiber and Integrated Optics 38(2) (2019) 91. DOI: https://doi.org/10.1080/01468030.2019.1595225

A. Bala, K. R. Chowdhury, M. B. Mia, and M. Faisal, Appl. Opt. 56 (2017) 7256. DOI: https://doi.org/10.1364/AO.56.007256

J. Lægsgaard, P.J. Roberts, and M. Bache, Optical and Quantum Electronics, 39(12-13) (2007) 995. DOI: https://doi.org/10.1007/s11082-007-9146-9

J. M. Hsu, Optics Communications 361 (2016) 104. DOI: https://doi.org/10.1016/j.optcom.2015.10.044

M. Guillon, K. Dholakia, and D. McGloin, Opt. Express 16 (2008) 7655. DOI: https://doi.org/10.1364/OE.16.007655

H. Tu and S. A. Boppart, Laser Photonics Rev.7(5) (2013) 628. DOI: https://doi.org/10.1002/lpor.201200014

W. J. Ling, K. Li. and Y. Y. Zuo, Applied Mechanics and Materials, 302 (2013) 194. DOI: https://doi.org/10.4028/www.scientific.net/AMM.302.194

H. Liu, Y. Yu, W. Song, Q. Jiang, and F. Pang, Opto-Electronic Advances, 2(2) (2019) 1800201. DOI: https://doi.org/10.29026/oea.2019.180020

J. M. Dudley, G. Genty, and S. Coen, Rev. Modern Phys. 78(4) (2006) 1135. DOI: https://doi.org/10.1103/RevModPhys.78.1135

A. M. Heidt, J. Opt. Soc. Am. B 27 (2010) 550. DOI: https://doi.org/10.1364/JOSAB.27.000550

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, Opt. Express, 19 (6) (2011) 4902. DOI: https://doi.org/10.1364/OE.19.004902

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, Opt. Express 14(21) (2006) 9854. DOI: https://doi.org/10.1364/OE.14.009854

A. V. Husakou, and J. Herrmann, Phys. Rev. Lett. 87(20) (2001) 203901. DOI: https://doi.org/10.1103/PhysRevLett.87.203901

J. K. Ranka, R.S. Windeler, and A.J. Stentz, Opt. Lett. 25 (1) (2000) 25. DOI: https://doi.org/10.1364/OL.25.000025

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and

W. P. Qin, Laser Phys. Lett. 15(2) (2018) 025102. DOI: https://doi.org/10.1088/1612-202X/aa8bc2

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, Appl. Sci. 8(5) (2018) 7071. DOI: https://doi.org/10.3390/app8050707

D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, Opt. Mater. Express. 3(9) (2013) DOI: https://doi.org/10.1364/OME.3.001358

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach and R.

Buczy´nski, J. Opt. 19(12) (2017) 125604. DOI: https://doi.org/10.1088/2040-8986/aa96bc

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak and R.

Buczy´nski, Appl. Opt. 57(14) (2018) 3738. DOI: https://doi.org/10.1364/AO.57.003738

H. V. Le, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Kasztelanic, and R. Buczy´nski, Laser Phys. 28(11) (2018)

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczy´nski, and

J. Pniewski, Laser Phys. 29(7) (2019) 075107. DOI: https://doi.org/10.1088/1555-6611/ab2115

L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczy´nski, and J.

Pniewski, Laser Phys. 30(3) (2020) 035105. DOI: https://doi.org/10.1088/1555-6611/ab6f09

P. S. Maji and P. R. Chaudhuri, Optik 125 (2014) 5986. DOI: https://doi.org/10.1016/j.ijleo.2014.07.026

N. Munera and R. A. Herrera, Opt. Commun. 368 (2016) 185. DOI: https://doi.org/10.1016/j.optcom.2016.02.004

T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, Opt. Lett. 20(9) (1995) 988. DOI: https://doi.org/10.1364/OL.20.000988

E. K. Plyler, and C. J. Humphreys, J. Res. Nat. Bur. Standards 39 (1947) 59. DOI: https://doi.org/10.6028/jres.039.042

Lumerical Solutions, Inc., http://www.lumerical.com.

G. Stepniewski, R. Kasztelanic, D. Pysz, R. Stepien, M. Klimczak, R. Buczynski, Opt. Mater. Express 6(8)

(2016) 2689.

S. Kedenburg, M. Vieweg, T. Gissibl and H. Giessen, Opt. Mater. Express 2(11) (2012) 1588. DOI: https://doi.org/10.1364/OME.2.001588

G. P. Agrawal, Nonlinear fiber optics, 5th edn, Oxford: Academic Press, 2013. DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

R. Zhang, J. Teipel and H. Giessen, Opt. Express 14(15) (2006) 6800. DOI: https://doi.org/10.1364/OE.14.006800

M. Chemnit, C. Gaida, M. Gebhardt, F. Stutzki J. Kobelke, A. Tunnermann, J. Limpert and M. A. Schmidt Opt.

Express 26 (3) (2018) 3221. DOI: https://doi.org/10.1364/OE.26.003221

Z. Kang, F. Xu, J. Yuan , S. Member, F. Li , B. Yan, X. Zhou, Q. Wu , K. Wang, X. Sang, K. Long, S. Member

and C. Yu IEEE J. Quantum Electron. 55(2) (2019) 1. DOI: https://doi.org/10.1109/JQE.2019.2897190

Downloads

Published

08-01-2021

How to Cite

[1]
B. Chu Van, D. Quang Ho, L. Thi Ha, V. Cao Long, V. Van Hung, and H. Le Van, “Simulation Study on Supercontinuum Generation at Normal Dispersion Regime of a Carbon Disulfide-core Photonic Crystal Fiber”, Comm. Phys., vol. 31, no. 2, p. 169, Jan. 2021.

Issue

Section

Papers
Received 07-10-2020
Accepted 17-11-2020
Published 08-01-2021