Influence of Temperature And Concentration of Ethanol on Properties of Borosilicate Glass Photonic Crystal Fiber Infiltrated by Water – Ethanol Mixture

Authors

  • Hieu Le Van Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland; and Department of Physics, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam;
  • Hue Thi Nguyen Department of Physics, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam;
  • Quang Ho Dinh School of Chemistry, Biology and Environment, Vinh University, 182 Le Duan Street, Vinh City, Nghe An Province, Vietnam.
  • Van Cao Long Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland

DOI:

https://doi.org/10.15625/0868-3166/28/1/11084

Keywords:

Photonic crystal fibers, dispersion, temperature, supercontinuum generation

Abstract

In this paper, we present a numerical simulation of the properties of a photonic crystal fiber (PCF) made of borosilicate glass infiltrated by the water-ethanol mixture. We examine the influence of temperature and ethanol concentration for the refractive index, dispersion properties, effective mode area and confinement loss of the fundamental mode by a Lumerical simulation method. We also calculate the fundamental mode of the fiber infiltrated with a water-ethanol mixture with the concentration range of ethanol from 0% to 100% in the temperature range from 10°C to boiling point of ethanol. The results show that all fibers infiltrated with water-ethanol mixture have flat dispersion characteristics in the infrared range above 1.32. The best flatness exists for pure ethanol. Furthermore, it is possible to shift the zero-dispersion wavelength and modify fundamental properties of PCFs by both temperature and concentration of ethanol. The results obtained are important because of that we not only use their reasonable parameters for the design and manufacture but also use them in nonlinear phenomena and nonlinear applications of fibers as supercontinuum generation.

Downloads

Download data is not yet available.

References

. G. P. Agrawal, Nonlinear Fiber Optics, Fifth edition, Elsevier 2013.

. J. C. Knight et. al. Optics Letters 21 (19) (1996) 1547-1549.

. J.C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, Science 282 (5393) (1998) 1476-1478.

. P. S. J. Russell, Journal of light wave technology 24 (12) (2006) 4729-4749.

. P. Russell, Science 299 (5605) (2003) 358-362.

. J. K. Ranka et. al. Optics Letters 25 (11) (2000) 796-798.

. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, Eletron. Lett.36 (17) (2000) 1452-1253.

. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, C. Lu, IEEE Photon. Technol. Lett.17 (8) (2005) 1626-1628.

. N. Muduli, S.K. Tripathy, Optik 125 (16) (2014) 4363-4366.

. J.M.Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78 (4) (2006) 1135-1178.

. R.Wang, J.Yao, Y.Miao, Y.Lu, D.Xu, N.Luan, M.Musideke, L. Duan, C. Hao, Sensors 13 (6) (2013) 7916-7925.

. G.P.Agrawal, Fiber optic communication systems, 3nd ed. Wiley, ISBN 0-471-22114-7 (Electronic), 2002.

. D. Chen, Laser Phys.Lett. 4 (6) (2007) 437-439.

. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, Opt. Lett. 24 (20) (1999) 1395-1397.

. J. M. Dudley, J. R. Taylor, Nature Photonics 3 (2) (2009) 85-90.

. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, Appl. Phys. B 93 (2008) 531-538.

. D. Pysz, I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, R. Buczynski, Bull. Pol. Acad. Sci. Tech. Sci. 62 (4) (2014), 667-682.

. Cao Long Van, Communications in Physics 26 (4) (2016) 301-323.

. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, Opt. Lett. 21 (19) (1996) 1547-1549.

. T. A. Birks, J. C. Knight, P. St. J. Russell, Opt. Lett. 22 (13) (1997) 961-963.

. S. A. Cerqueira Jr, Rep. Prog. Phys. 73 (2) (2010) 024401.

. J. C. Knight, T. A. Birks, P. St. J. Russell, J. P. de Sandro, J. Opt. Soc. Am. A 15 (3) (1998) 748-752.

.W. Lin, Y. Miao, B. Song, H. Zhang, B. Liu, Y. Liu, D.Yan, Opt. Comm. 336 (2015) 14-19.

. P.S. Maji, P.R. Chaudhuri, Optik 125 (20) (2014) 5986-5992.

. J. Pniewski, T.Stefaniuk, H. Le Van, V. Cao Long, L. Chu Van, R. Kasztelanic, G. Pniewski, A. Ramaniuk, M. Trippenbach, R. Buczynski, Applied Optics 55 (19) (2016) 5033-5040.

. E. Yoshida, A.Wada, N. Karasawa, Japanese Journal of Applied Physics 55 (7) (2016) 072501.

. Hieu Le Van, R. Buczynski, V.C. Long, M.Trippenbach, K. Borzycki, An Manh Nguyen, R. Kasztelanic, Optics Communications 407 (2017), 417-422.

. N. Karasawa, Appl. Opt. 51 (21) (2012) 5259-5265.

. R. Buczynski, D. Pysz, R. Stepien, R. Kasztelanic, I. Kujawa, M. Franczyk, A. Filipkowski, Andrew J.Waddie , M. R. Taghizadeh, Journal of the European optical society-Rapid publications 6 (2011) 11038.

. Lumerical Solutions Inc., http://www.lumerical.com.

. L. Chu Van, T. Stefaniuk, R. Kasztelanic, V. Cao Long, M. Klimczak, H. Le Van, M. Trippenbach, R.Buczyński, Proc. of SPIE 9816 (2015) 98160O-1.

. A. Bashkatov, E. Genina, Proc. of SPIE 5068 (2003).

. J. Lei, S. Hou, Y. Liu, X. Li, Progress In Electromagnetics Research Symposium Proceedings (2014) 565-568.

. G. Stepniewski, R. Kasztelanic, D. Pysz, R. Stepien, M. Klimczak, R. Buczynski, Optical Materials Express 6 (8) (2016) 2689-2703.

. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, Optics Express 9 (13) (2001) 687-697.

. F. Begum, Y. Namihira, T. Kinjo, S. Kaijage, Optics Communications 284 (4) (2011) 965-970.

. X. Luo, J. Peng, L. Cheng, L. Yang, N. Dai, H. Li,and J. Li, IEEE Photonics Journal 7 (5) (2015) 4501309.

. H. Saghaei, M.K. Moravvej-Farshi, M. Ebnali-Heidari, M.N. Moghadasi, IEEE Journal of Selected Topics in Quantum Electronics 22 (2) (2016) 4900508.

Downloads

Published

17-07-2018

How to Cite

Le Van, H., Nguyen, H. T., Ho Dinh, Q., & Cao Long, V. (2018). Influence of Temperature And Concentration of Ethanol on Properties of Borosilicate Glass Photonic Crystal Fiber Infiltrated by Water – Ethanol Mixture. Communications in Physics, 28(1), 61. https://doi.org/10.15625/0868-3166/28/1/11084

Issue

Section

Papers