Vol. 30 No. 4 (2020)
Papers

Synthesis and Electrochemical Characterization of NiCo\(_2\)S\(_4\) Nanosheets/reduced Graphene Oxide for Energy Storage Applications

Thi Thanh Tam Le
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Thanh Tung Doan
Institute for Tropical Technology - VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY
Bio
Thanh Dung Ngo
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Ngoc Hong Phan
Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Van Hoi Pham
Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Ngoc Minh Phan
Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Trong Lu Le
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Cover Vol 30 No 4 December 2020

Published 14-11-2020

Keywords

  • Electrode,
  • energy storage device,
  • NiCo2S4,
  • reduced graphene oxide,
  • transition metal sulfide

How to Cite

Le, T. T. T., Doan, T. T., Ngo, T. D., Phan, N. H., Pham, V. H., Phan, N. M., & Le, T. L. (2020). Synthesis and Electrochemical Characterization of NiCo\(_2\)S\(_4\) Nanosheets/reduced Graphene Oxide for Energy Storage Applications. Communications in Physics, 30(4), 399. https://doi.org/10.15625/0868-3166/30/4/15448

Abstract

In the present study, NiCo2S4-rGO (NCS-rGO) composites were fabricated by mixing active materials including NCS and rGO individually using polyvinypyrrolidone (PVP) as a binder to form a homogeneous mixture. Therein, rGO was prepared by modified Hummer’s method while NCS nanosheets were successfully synthesized by thermal decomposition method using 1-dodecanethiol (DDT) as a sulfur source. The NCS-rGO composites based electrode was then produced using 3D printing technique making easy to design electrodes with the desired shape. The architecture and elemental composition of electrode components are characterized by energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM). The electrochemical activity of the NCS-rGO electrode were studied in three electrode configuration in 6M KOH electrolyte by CV, GCD and EIS measurement. The obtained results indicate that the combination of NCS nanosheets and rGO could improve the electrical conductivity of the individual materials, enhance electrochemical performance of electrode. The as-prepared NCS-rGO electrode posseses a high Csp of 1535.8 Fg-1 at 4 Ag-1 with excellent cycling stability even after 2500 charge-discharge cycles,  demonstrating that the NCS-rGO nanocomposites  are promising candidates for electrode materials for high-performance energy storage devices in the future.

Downloads

Download data is not yet available.

References

  1. [1] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 4 (2005) 366.
  2. [2] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 22 (2010) E28–E62.
  3. [3] N. Garg, M. Basu, A. K. Ganguli, J. Phys. Chem. C 118 (2014) 17332.
  4. [4] S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015), 1401401.
  5. [5] P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.
  6. [6] K. Xu, R. Zou, W. Li, Q. Liu, X. Liu, L. An, J. Hu, J. Mater. Chem. A 2 (2014) 10090.
  7. [7] L. L. Zhang, X. Zhao, Chem. Soc. Rev. 38 (2009) 2520.
  8. [8] J. R. Miller, P. Simon, Sci. Mag. 321 (2008) 651.
  9. [9] A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, Y. Tian, Appl. Surf. Sci. 282 (2013) 704.
  10. [10] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366.
  11. [11] W. Peng, H. Li, S. Song, ACS Appl. Mater. Interfaces, 9 (2017) 5204.
  12. [12] P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju, M. V. Reddy, J. Mater. Chem. A. 5 (2017) 22040–
  13. [13] S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, Yu H, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Y. Yan,
  14. Chem. Commun. 49 (2013) 10178.
  15. [14] X. Cai, X. Shen, L. Ma, Z. Ji, L. Kong, RSC Advances 5 (2015) 58777.
  16. [15] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5 (2013) 981.
  17. [16] T. Chen, Y. Tang, W. Guo, Y. Qiao, S. Yu, S. Mu, F. Gao, Electrochimica Acta 212 (2016) 294.
  18. [17] H. Nan, J. Han, Q. Luo, X. Yin, Y. Zhou, Z. Yao, X. Zhao, X. Li, H. Lin, Appl. Surf. Sci. 437 (2018) 227.
  19. [18] H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5 (2013) 8879.
  20. [19] Surjit Sahoo, Chandra Sekhar Rout, Electrochemica Acta, 220 (2016) 57.
  21. [20] J. Pu, F. L. Cui, S. B. Chu, T. T. Wang, E. H. Sheng, Z. H. Wang, ACS Sustainable Chem. Eng. 2 (2014) 809.
  22. [21] Y. F. Zhang, M. Z. Ma, J. Yang, C. C. Sun, H. Q. Su, W. Huang, X. C. D, Nanoscale, 6 (2016) 9824.
  23. [22] L. Yu, L. Zhang, H. B. Wu, X. W. D. Lou, Angew. Chem. Int. Ed. Engl, 53 (2014) 3711.
  24. [23] J. W. Xiao, X. W. Zeng, W. Chen, F. Xiao, S. Wang, Chem. Commun. 50 (2014) 9596.
  25. [24] Q. Li, N. Mahmood, J.H. Zhu, Y.L. Hou, S.H. Sun, Nano Today 9 (2014) 668.
  26. [25] M. J. Zhi, C. C. Xiang, J. T. Li, M. Li and N. Q. Wu, Nanoscale 5 (2013) 72.
  27. [26] W.M.Du,Z.Y.Wang,Z.Q.Zhu,S.Hu,X.Y.Zhu,Y.F.Shi,H.Pang,X.F.Qian,J.Mater.Chem.A2(2014)
  28. [27] X. Huang, Z. Y. Yin, S. Wu, X. Y. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876.
  29. [28] C. C. Xiang, M. Li, M. J. Zhi, A. Manivannan, N. Q. Wu, J. Power Sources, 226 (2013) 65.
  30. [29] Le T. T. Tam, Nguyen V. Hung, Doan T. Tung, Ngo T. Dung, Hoang T. Dung, Pham T. Nam, Phan N. Minh,
  31. Phan N. Hong, Le T. Lu, Vietnam J. Sci. Technol. 57 (2019) 58.
  32. [30] Doan T. Tung, Le T. T. Tam, Hoang T. Dung, Ngo T. Dung, Nguyen T. Dung, Thai Hoang, Tran D. Lam, Phan
  33. N. Minh, Tran V. Thu, Phan N. Hong, Le T. Lu, J. Electron. Mater. 49 (2020) 4671.
  34. [31] K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv.
  35. Mater. 28 (2016) 2587.
  36. [32] S. Sahoo, C. S. Rout, Electrochimica Acta 220 (2016) 57.
  37. [33] W. M. Du, Z. Q. Zhu, Y. B. Wang, J. N. Liu, W. J. Yang, X. F. Qian, H. Pang, RSC Adv. 4 (2014) 6998.
  38. [34] M. B. Zakaria, M. Hu, R. R. Salunkhe, M. Pramanik, K. Takai, V. Malgras, S. Choi, S. X. Dou, J. H. Kim, M.
  39. Imura, S. Ishihara, Y. Yamauchi, Chem. A Eur. J. 21 (2015) 3605.
  40. [35] C. Mondal, M. Ganguly, P. K. Manna, S. M. Yusuf and T. Pal, Langmuir, 29 (2013), 9179.
  41. [36] S. Sahoo, C. S. Rout, Electrochimica Acta, 220 (2016) 57–66.
  42. [37] T. Morishita, Y. Soneda, H. Hatori, M. Inagaki, Electrochim. Acta, 52 (2007) 2478.
  43. [38] Y. H. Li, L. J. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. H. Zhang, J. Mater. Chem. A 2 (2014) 6540.
  44. [39] Z. Li, X. Ji, J. Han, Y. Hu, R. Guo, J. Colloid Interface Sci. 477 (2016) 46.
  45. [40] X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, ChemElectroChem, 5 (2018) 1576.
  46. [41] Y. Wu, M. Yan, L. Sun, W. Shi, New J. Chem. 42 (2018), 16174.
  47. [42] W. Peng, H. Chen, W. Wang, Y. F. Huang, G. Han, Curr. Appl. Phys. 20 (2020) 304.
  48. [43] N. V. Hoa, P. A. Dat, N. V. Hieu, T. N. Le, N. C. Minh, Ng. V. Tang, D. T. Nga, T. Q. Ngoc, Diam. Relat. Mater.
  49. (2020), 107850.